Lent Reading List - Option 11: Palaeoecology and Ancient Ecosystems
Please note that if references are marked with an asterisk (*) , they have been highlighted by your lecturers as being particularly useful to you.
Journal References
If available online the journal title will be linked to ABSTRACT LEVEL. You will have the option to download full-text or pdfs.
A number of these references will be available in the part II/III reprint collection housed in the Library Office. A full listing of what is in this collection is available on the Library website.
Lecture One- Early life on Earth
Dr N J Butterfield
- Knoll, A. H. (2003). Life on a young planet: the first three billion years of evolution on Earth. Princeton University Press, Princeton.
- Konhauser, K. (2007). Introduction to Geomicrobiology. Blackwell, Malden, Mass.
- *Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. and Burch, I. W. (2006). Stromatolite reef from the early Archaean era of Australia. Nature 441:714–718.
- *Brasier et al. (2002). Questioning the evidence for Earth’s oldest fossils. Nature 416:76-81
- *Buick, R. (2001). Life in the Archean. Pp. 74–77 in Briggs, D. E. G. and Crowther, P. R. (eds), Palaeobiology II. Blackwell, Oxford.
- Fedo, C. M., Whitehouse, M. J. and Kamber, B. S. (2006). Geological constraints on detecting the earliest life on Earth: a perspective from the Early Archaean (older than 3.7 Gyr) of southwest Greenland.Philosophical Transactions of the Royal Society B 361:851–867.
- Hawkesworth, C. J., and Kemp, A. I. S. 2006. Evolution of the continental crust. Nature 443:811–817.
- *Knoll, A. H., and Canfield, D. E. (1998). Isotopic inferences on early ecosystems. Paleontological Society Papers 4:212–243.
- Nemchin, A. A., Whitehouse, M. J., Menneken, M., Geisler, T., Pidgeon, R. T., and Wilde, S. A. 2008. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454:92–95.
- Nutman, A. P., C.R.L. Friend, Vickie C. Bennett, David Wright, Marc D. Norman (2010) ≥3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): Simple evidence for early life? Precambrian Research, Volume 183, pp725-737
- Rosing, M. T. (1999). 13 C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676.
- *Schopf, J. W., Kudryavtsev, A. B., Czaja, and A. D., Tripathi, A. B. 2007. Evidence of Archean life: stromatolites and microfossils. Precambrian Research 158:141–155.
- Shen, Y. et al. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81.
- Stetter, K. O. (2006). Hyperthermophiles in the history of life. Philosophical Transactions of the Royal Society B 361:1837–1843.
- Sugitani, K., Lepot, K., Nagaoka, T., Mimura, K., Van Kranendonk, M., Oehler, D.Z. & Walter, M.R. 2011. Biogenicity of Morphologically Diverse Carbonaceous Microstructures from the ca. 3400Ma Strelley Pool Formation, in the Pilbara Craton, Western Australia. Astrobiology 10:899–920.
- Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. and Isozaki, Y. (2006). Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519.
- * Valley, J. W., Peck, W. H., King, E. M., and Wilde, S. A. (2002). A cool early Earth. Geology 30:351–354.
- * van Zuilen, M. A., Lepland, A., and Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Nature 418:627–630.
- Whitehouse, M.J., Myers, J.S. & Fedo, C.M. 2009. The Akilia Controversy: field, structural and geochronological evidence questions interpretations of >3.8 Ga life in SW Greenland. Journal of the Geological Society 166:335–348.
Lecture Two
N J Butterfield
- *Allen, J. F., and Martin, W. 2007. Out of thin air. Nature 445:610–612.
- *Bekker, A., Holland, H. D., Wang, P.-L., Rumble, D. III, Stein, H. J., Hannah, J. L., Coetzee, L. L. and Beukes, N. J. (2004). Dating the rise of atmospheric oxygen. Nature 427:117–120.
- Bekker, A., Holmden, C., Beukes, N., Kenig, F., Eglinton, B. & Patterson, W. 2008. Fractionation between inorganic and organic carbon during the Lomagundi (2.22-2.1 Ga) carbon isotope excursion. EPSL 271:278–291
- Bosak, T., Liang, B., Sim, M.S. & Petroff, A.P. 2009. Morphological record of oxygenic photosynthesis in conical stromatolites. PNAS 106:10939–10943.
- Buick, R. 2008. When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society B: Biological Sciences 363:2731–2743.
- *Catling, D. C., and Claire, M. W. (2005). How Earth’s atmosphere evolved to an oxic state: a status report. Earth and Planetary Science Letters 237:1-20.
- Farquhar, J. and Wing, B. A. (2003). Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Sciences Letters 213:1–13.
- Godfrey, L.V. & Falkowski, P.G. 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nature Geoscience 2:725–729.
- Goldblatt, C., Lenton, T. M. and Watson, A. J. (2006). Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–686.
- Goldblatt, C., Claire, M.W., Lenton, T.M., Matthews, A.J., Watson, A.J. & Zahnle, K.J. (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience 2:891–896.
- Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A. & Yang, H. 2008. Mineral evolution. American Mineralogist 93:1693–1720
- Hoashi, M., Bevacqua, D.C., Otake, T., Watanabe, Y., Hickman, A.H., Utsunomiya, S. & Ohmoto, H. 2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geoscience 2:301–306.
- Kappler, A., Pasquero, C., Konhauser, K. O. and Newman, D. K. (2005). Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria . Geology 33:865–868.
- *Kasting, J.F. 2010. Early Earth: faint young Sun redux. Nature 464:687–689.
- Kasting, J. F. and Ono, S. (2006). Palaeoclimates: the first two billion years. Philosophical Transactions of the Royal Society B 361:917–929.
- Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. and Nash, C. Z. (2005). The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102:11131–11136
- *Kump, L.R. 2008. The rise of atmospheric oxygen. Nature 451:277–278.
- Lyons, T.W., Anbar, A.D., Severmann, S., Scott, C. & Gill, B.C. 2009. Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annual Review of Earth and Planetary Sciences 37:507–534.
- *Rasmussen, B., and Buick, R. (1999). Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara craton, Australia.Geology 27:115–118 (also 27:1151–1152).
- Rasmussen, B., Fletcher, I. R., Brocks, J. J., and Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104.
- Rosing, M. T. and Frei, R. (2004). U-rich Archaean sea-floor sediments from Greenland – indications of > 3700 Ma oxygenic photosynthesis. Earth and Planetary Science Letters 217:237–244.
- Rouxel, O. J., Bekker, A. and Edwards, K. J. (2005). Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–1091.
A debate on Archean CO2 and climate - hot or not?
- Bada, J.L. and Lazcano, A. (2002): Some like it hot, but not the first biomolecules. Science 296, 1982-1983
- Lowe, D. R. (2007). A comment on ‘‘Weathering of quartz as an Archean climatic indicator’’ by N.H. Sleep and A.M. Hessler [Earth Planet. Sci. Lett. 241 (2006) 594–602]. Earth and Planetary Science Letters 253:530–533 (also 253: 534-235).
- Knauth, L. P. and Lowe, D. R. 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland group, South Africa, Geological Society of America Bulletin 115:566–580.
- Robert, F. and Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972.
- Sleep, N. H. and Hessler, A. M. (2006). Weathering of quartz as an Archean climatic indicator.Earth and Planetary Science Letters 241:594–602.
- Stetter, K. O. 2006. Hyperthermophiles in the history of life. Philosophical Transactions of the Royal Society B 361:1837–1843.
Lecture Three
N J Butterfield
- Konhauser, K. 2007. Introduction to Geomicrobiology. Blackwell. Chapters 2 & 6.
- Lane, N., Allen, J.F. & Martin, W. 2010. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 32, 271–280.
- Rosing, M.T., Bird, D.K., Sleep, N.H., Glassley, W. & Albarede, F. 2006. The rise of continents--An essay on the geologic consequences of photosynthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 232:99–113.
- Baker, V. R. 2001. Water and the martian landscape. Nature 412:228–236.
- Charbonneau, D., et al. 2009. A super-Earth transiting a nearby low-mass star. Nature 462:891–894.
- Chyba, C. F., and Hand, K. P. 2001. Life without photosynthesis. Science 292:2026–2027.
- Fassett, C. I., and Head, J. W. 2008. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198 37–56.
- Formisano, V. et al. 2004. Detection of methane in the atmosphere of Mars. Science 306:1758–1761.
- Gladman, B. 1997. Destination: Earth. Martian meteorite delivery. Icarus 130:228–246.
- Grotzinger, J. et al. 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters 240:11–72.
- Grotzinger, J. et al. 2006. Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars. Geology 34:1085–1088.
- Kalas, P. et al. 2008. Optical images of an exosolar planet 25 light-years from Earth. Science 322:1345–1348.
- Lineweaver, C. H., Fenner, Y. and Gibson, B. K. 2004. The galactic habitable zone and the age distribution of complex life in the Milky Way. Science 303:59–62.
- Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M. and Dobrea, E. Z. N. 2006. Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–.1577.
- Marois, C. 2008. Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348–1352.
- McKay, D. S., Gibson, E. K., Thomas-Keprtra, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maeschling, C. R., and Zare, R. N. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930.
- Mileikowsky, C., Cucinotta, F. A., Wilson, J. W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M., Zheng J. Q. 1999. Natural Transfer of Viable Microbes in Space 1. From Mars to Earth and Earth to Mars. Icarus 145:391–427.
- Schon, S. C., Head, J. W., Fassett, C. I. 2009. Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: evidence for ca. 1.25 Ma gully activity and surficial meltwater origin. Geology 37:207–210.
- Sephton, M. A. and Botta, O. 2005. Recognizing life in the Solar System: guidance from meteoritic organic matter. International Journal of Astrobiology 4: 269–276.
- Soare, R. J., Osinski, G. R., Roehm, C. L. 2008. Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth and Planetary Science Letters 272:382–393.
- Squyres, S. W. et al. 2006. Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. JGR 111, E12S12, doi:10.1029/2006JE002771.
- Stofan, E. R. 2007. The lakes of Titan. Nature 445:61–64.
Lecture Four
- Bengtson, Stefan, Birger Rasmussen and Bryan Krape (2007). The Paleoproterozoic megascopic Stirling biota
Paleobiology; June 2007; v. 33; no. 3; p. 351-381 - *Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285:1033--1036 (also 285:1025–1026).
- *Butterfield, N. J. (2000).Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity and the Mesoproterozoic-Neoproterozoic radiation of eukaryotes.Paleobiology 26:386–404.
- *Butterfield, N.J. 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research 173:201–211.
- Embley T. Martin and William Martin (2006).Eukaryotic evolution, changes and challenges. Nature 440, 623-630
- Huntley, J. W., Xiao, S. and Kowalewski, M. (2006). 1.3 Billion years of acritarch history: An empirical morphospace approach.Precambrian Research 144:52–68.
- Javaux, E. J., Knoll, A. H., Walter, M. R. (2001). Morphological and ecological complexity in early eukaryotic ecosystems.Nature 412:66–69.
- Javaux, J., Marshall, C.P. & Bekker, A. 2010 Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938.
- Keeling, P.J. 2010. The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B: Biological Sciences 365:729–748.
- *Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., Roger, A. J. and Gray, M. W. (2005). The tree of eukaryotes. TREE 20:670–676.
- Kurland, C. G., Collins, L. J. and Penny, D. (2006). Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014.
- *Lane, N. & Martin, W. 2010. The energetics of genome complexity. Nature 467:929–934.
- *Lane, Christopher E and John M. Archibald (2008). The eukaryotic tree of life: endosymbiosis takes its TOL. Trends in Ecology & Evolution, Volume 23, Issue 5, Pages 268-275
- Matz Mikhail V.,Tamara M. Frank, N. Justin Marshall, Edith A. Widder, and Sönke Johnsen (2008). Giant Deep-Sea Protist Produces Bilaterian-like Traces. Current Biology, 18, 23, 1849-1854
- Porter, S. M. and Knoll, A. H. (2000). Testate amoebae in the Neoproterozoic era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360–385.
- Rasmussen Birger, Ian R. Fletcher, Jochen J. Brocks & Matt R. Kilburn. (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101-11
Lecture Five
N J Butterfield
- Allen, Philip A. & James L. Etienne (2008) Sedimentary challenge to Snowball Earth. Nature Geoscience 1, 817 - 825
- *Anbar, A. D., and Knoll, A. H. (2002). Proterozoic ocean chemistry and evolution: a bioinorganic bridge?Science 297:1137–1142.
- Bartley, J. K. and Kah, L. C. 2004. Marine carbon reservoir, C org-C carb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32:129–132.
- Bradley Dwight C. (2008). Passive margins through earth history. Earth-Science Reviews, Volume 91, Issues 1-4, 1-26
- Canfield, D. E. (1998). A new model for Proterozoic ocean chemistry. Nature 396:450–453.
- *Canfield, D. E., and Teske, A., Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132. (also 382:111–112)
- Condon, D. J., Prave, A. R., and Benn, D. I. (2002). Neoproterozoic glacial-rainout intervals: Observations and implications. Geology 30:35–38.
- Corsetti, F. A., Olcott, A. N. and Bakermans, C. ( 2006). The biotic response to Neoproterozoic snowball Earth.PPP 232:114–130.
- Eyles, N. and Januszczak, N. (2004). ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Science Reviews 65:1-73.
- *Fairchild, Ian J. and Martin J. Kennedy. (2007). Neoproterozoic glaciation in the Earth System. Journal of the Geological Society; 2007; 164, 5; 895-921
- Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. and Rice, A. H. N. (2005). Toward a Neoproterozoic composite carbon-isotope record. GSA Bulletin 117:1181–1207.
- Halverson, Galen P., Francis Ö. Dudás, Adam C. Maloof and Samuel A. Bowring (2007). Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256, 3-4, 103-129
- *Hoffman, P. F., and Schrag, D. P. (2002). The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155.
- *Jiang, G., Kennedy, M. J., and Christie-Blick, N. (2003). Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426:822–826.
- Kah, L. C., Lyons, T. W. and Frank, T. D. (2004). Low marine sulphate and protracted oxygenation of the Proterozoic biosphere.Nature. 431:834–838.
- Kennedy, M. J., Christie-Blick, N. and Prave, A. R. (2001)Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for snowball Earth phenomena. Geology 29:1135–1138.
- Li, Z.X. et al. (2008). Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research
160, 1-2, 179-210 - Pierrehumbert, R. T. (2004). High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429:646–649.
- Tomitani, A., Knoll, A. H., Cavanaugh, C. M. and Ohno, T. (2006). The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives.PNAS 103:5442–5447.
- Williams, George E. (2008). Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests. Earth-Science Reviews, 87, 3-4, 61-93
- Zerkle, A. L., House, C. H., Cox, R. P. and Canfield, D. E. (2006). Metal limitation of cyanobacterial N 2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4:285–297.
Lecture Six
N J Butterfield
- Antcliffe, Jonathan B, Brasier, Martin D. (2008) Charnia AT 50: Developmental Models For Ediacaran Fronds. Palaeontology, Volume 51, Number 1
- *Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E. and Corsetti, F. A. (2007). Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445:198–201.
- *Brasier, M. and Antcliffe, J. (2004). Decoding the Ediacaran enigma. Science 305:1115–1117.
- *Butterfield, N. J. 2009. Oxygen, animals and oceanic ventilation : an alternative view. Geobiology 7: 1-7
- *Butterfield, N. J. (2007). Macroecology and macroevolution through deep time. Palaeontology 50:41–55.
- Campbell and Allen, (2008) Formation of supercontinents linked to increases in atmosphericoxygen, Nature Geoscience, 1:554-558
- Canfield, D. E., Poulton, S. W. and Narbonne, G. M. (2007). Late Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95.
- Canfield, Donald E.; Poulton, Simon W.; Knoll, Andrew H.; Narbonne, Guy M.; Ross, Gerry;
Goldberg, Tatiana; Strauss, Harald (2008). Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry
Science, 321, 949- . - Chen, J.-Y. et al. (2 004). Small bilaterian fossils from 40 to 55 million years before the Cambrian.Science 305:218–222.
- Fike, D. A., Grotzinger, J. P., Pratt, L. M. and Summons, R. E. (2006). Oxidation of the Ediacaran Ocean.Nature 444:744–747.
- *Gehling, J. G. (1999). Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:40–57.
- Grant, S. W. F. (1990). Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290-A:261–294.
- *Grazhdankin, D. (2004). Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution.Paleobiology 30:203–221.
- Dmitriy V. Grazhdankin, Uwe Balthasar, Konstantin E. Nagovitsin, and Boris B. Kochnev (2008). Carbonate-hosted avalon-type fossils in arctic Siberia. Geology (Boulder) 36(10):803-806
- Grey, Kathleen Malcolm R. Walter, and Clive R. Calver (2003). Neoproterozoic biotic diversification; snowball Earth or aftermath of the Acraman impact? Geology (Boulder) 31(5), 459-462
- Grotzinger, J. P., Watters, W. A., and Knoll, A. H. (2000). Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26:334–359.
- *Hagadorn, J. W. et al. (2006). Cellular and subcellular structure of Neoproterozoic animal embryos. Science 314:291–294.
- Hofmann, H. J., Narbonne, G. M., and Aitken, J. D. (1990). Ediacaran remains from intertillite beds in northwestern Canada. Geology 18:1199–1202.
- Hong H., Pratt, B. R., and Zhang L.-Y. (2003). Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaois 18:454–459.
- Jensen, S., Droser, M. L. and Gehling, J. G. (2006). A critical look at the Ediacaran trace fossil record. Pp. 115–157, in Xiao, S. and Kaufman, A. J. (eds), Neoproterozoic Geobiology and Paleobiology; Springer, Dordrecht.
- Kennedy, M., Droser, M., Mayer, L. M. Pevear, D. and Mrofka, D. (2006). Late Precambrian oxygenation; inception of the clay mineral factory.Science 311:1446–1449.
- Knoll, A. H., Walter, M. R., Narbonne, G. M. and Christie-Blick, N. (2006). The Ediacaran Period: a new addition to the geological time scale. Lethaia 39:13–30.
- Kump Lee R. 2008. The rise of atmospheric oxygen. Nature 451, 277-278
- Laflamme, M., and Narbonne, G.M. 2008. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology 258: 162-179
- *Narbonne, G. M. (2005). The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Science 33:
- Narbonne, G. M., and Gehling, J. G. (2003). Life after snowball: The oldest complex Ediacaran fossils.Geology 31:27–30.
- *Seilacher, A. (1989). Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239.
- Seilacher, A. (1992). Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London 149:607–613.
- Seilacher, A., Buatois, L. A. and Mángano, M. G. (2005). Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift.PPP 227:323–356.
- Schulz, H. N. and Schulz, H. D. (2005). Large sulfur bacteria and the formation of phosphorite. Science 307:416–418.
- Valentine, J. W. (2004). On the origin of phyla. University of Chicago Press, Chicago. 614 pp.
- Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. (2002). Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296:2383–2386.
- Xiao S. (2002). Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos. Paleobiology 28:244–250.
- *Xiao, S., Hagadorn, J. W., Zhou, C. and Yuan, X. (2007). Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age?Geology 35:115–118
- *Xiao, Shuhai and Marc Laflamme (2008). On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution, Volume 24, Issue 1,
- Xiao S., Yuan X., and Knoll, A. H. (2000). Eumetazoan fossils in terminal Proterozoic phosphorites?Proceedings of the National Academy of Sciences, USA 97:13684–13689.
- Yin, Leiming , Maoyan Zhu, Andrew H. Knoll, Xunlai Yuan, Junming Zhang & Jie Hu . Doushantuo embryos preserved inside diapause egg cysts. Nature 446, 661-663
- Yuan, X., Xiao, S. and Taylor, T. N. (2005). Lichen-like symbiosis 600 million years ago.Science 308:1017–1020.
- Zhang,Y., Yin,L., Xiao,S. & Knoll,A.H. (1998). Permineralized fossils from the terminal Proterozoic Doushantuo Formatin, South China. Paleontological Society Memoir 50 (Journal of Paleontology 72:1–52, no. 4 supp.).
Lecture
N J Butterfield
- Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W. and Matter. A. (2003). Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman.Geology 31:431–434.
- Babcock, L. E., and Peng. S. 2007. Cambrian chronostratigraphy : current state and future plans. Palaeogeography, Palaeoclimatology, Palaeoecology 254: 62-66.
- Bengtson, S. and Zhao, Y. (1997). Fossilized metazoan embryos from the earliest Cambrian. Science 277:1645–1648.
- http://www.sciencemag.org/cgi/content/abstract/277/5332/1645
- Bloh, W. von, C. Bounama, and S. Franck. (2003). Cambrian explosion triggered by geosphere-biosphere feedbacks. Geophysical Research Letters 30:
- Boyle, R. A., Lenton, T.M., and Williams (2007) Neoproterozoic 'snowball Earth' glaciations and the evolution of altruism. Geobiology. Volume 5 Issue 4, Pages 337 - 349
- Brasier, M. D. (1992). Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society, London 149:621–629.
- Brennan, S. T., Lowenstein, T. K. and Horita, J. (2004). Seawater chemistry and the advent of biocalcification. Geology 32:473–476.
- *Budd, G. E. and Jensen, S. (2000). A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75:253–295.
- Butterfield, N. J. (1997). Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology 23:247–262.
- *Butterfield, N. J. (2001b). Cambrian Food Webs. In Briggs, D. E. G., and Crowther, P. R. (eds.). Palaeobiology II, A Synthesis. Blackwell Scientific, Oxford. Pp. 40–43
- *Butterfield, N. J. (2003). Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology 43:166–177.
- *Butterfield, N. J. (2007). Macroevolution and macroecology through deep time. Palaeontology 50:41–55.
- * Butterfield NJ (2009) Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7(1)
- Cohen, B. L. (2005). Not armour, but biomechanics, ecological opportunity and increased fecundity as keys to the origin and expansion of the mineralized benthic metazoan fauna. Biological Journal of the Linnean Society 85: 483–490.
- Jensen, Sören; Gehling, James G.; Droser, Mary L. (1998) Ediacara-type fossils in Cambrian sediments. Nature, 393, 6685: 567-569
- Kirschvink, J. L. and Raub, T. D. (2003). A methane fuse for the Cambrian explosion: carbon cycles and true polar wanderComptes Rendus. Geoscience 335:65–78.
- Knoll, A. H., and Carroll, S. B. (1999). Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137.
- Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. (1995). Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56.
- McIlroy, D., and Logan, G. A. (1999). The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaios 14:58–72.
- * Peterson, K. J. and Butterfield, N. J. (2005). Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences, U.S.A 102:9547–9552.
- Rowland, S.M., 2001, Archaeocyaths - a history of phylogenetic interpretation: Journal of Paleontology, v. 75, p. 1065-1078
- Squire, R. J., Campbell, I. H., Allen, C. M. and Wilson, C. J. L. (2006). Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth and Planetary Science Letters 250:116–133.
- Zhuravlev, A. Yu. (2001). Biotic diversity and structure during the Neoproterozoic-Ordovician transition. Pp. 173–199 in Zhuravlev, A. Yu. and Riding, R. (eds), The Ecology of the Cambrian Radiation. Columbian University Press, New York.
Lecture Seven
Simon Conway Morris
- Bottjer, D.J. et a!. 2002. Exceptional fossil preservation: A unique view on the evolution of marine flfe. Columbia.
- Briggs, D.E.G. and Crowther, P.R. (eds.) 2001. Palaeobiologyll. Blackwell.
- *Brigg5, D.E.G. et al. 1994. The fossils of the Burgess Shale. Smithsonian Institution Press.
- *Butterfield, N.J. 2007. Macroevolution and
macroevology through deep time. Palaeontology
50, 4 1-55.
- *Conway Morris, S. 1998. The crucible of creation. The Burgess Shale and the rise of animals. Oxford.
- *Conway Morris, S. 2006. Darwin's dilemma: the realities of the Cambrian ‘explosion'. Phil. Trans. Roy. Soc. Lond. B 361, 1069-1083.
- Gould, S.J. 1990. Wonderful Life. The Burgess Shale and the nature of history. Hutchinson.
- Hou, X-G. et al. 2004. The Cambrian fossils of Chengjiang, China: The flowering of early animal life. Blackwell.
- Jenner, R.A. and Littlewood, D.T. 2008. Problematica old and new. Phil. Trans. Roy. Soc. Lond. B 363, 1503-1512.
- Pagel, M. (ed.) 2002. Encyclopedia of evolution. Oxford.
- Peterson, K.J. et a!. 2008. The Ediacaran emergence of bilaterians: Congruence between the genetic and geological fossil records. Phil. Trans. Roy. Soc. Lond. B 363, 1557-1568.
- Selden, P. and Nudds, J. 2004. Evolution offossil ecosystems. Manson.
- Shu, D-G., Conway Morris, S. et a! 2006. Lower Cambrian vendobionts from China and early diploblast evolution. Science 312, 73 1-734.
- *Valentine, J.W. 2004. On the origin ofphyla. Chicago.
- Whittington,
H.B. 1985. The Burgess Shale.
Yale
University Press.
****** - Allison, P.A. & Brett, C.E. 1995. In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada. Geology 23, 1079-1082.
- Butterfield, N.J. 1990. Organic preservation of
non-mineralizing organisms and the taphonomy of the Burgess Shale.
Paleobiology 16,
272-286 [see also following paper on Wiwaxia].
- Bruton, D.L. 2001. A death assemblage of priapulid worms from the Middle Cambrian Burgess Shale. Lethaia 34, 163-167.
- Caron, J-B. and Jackson, D.A. 2006. Taphonomy of the Greater Phyllopod bed community, Burgess Shale. Palaios 21, 451-465.
- Caron, J-B. and Jackson, D.A. 2008. Paleoecology of the Greater Phyllopod Bed Community, Burgess Shale. Palaeogeog. Palaeoclim. Palaeoecol. 258, 222-256.
- * Conway Morris, S. 1986. The community structure of the Middle Cambrian Phyllopod bed (Burgess Shale). Palaeontology 29, 423-467.
- * Conway Morris, S. 1989. Burgess Shale faunas and the Cambrian explosion. Science 246, 339-346 [reprinted (partially) in Ridley, M. (1997) Evolution. Oxford Readers, see pp. 311-319]
- Conway Morris, S. 1992. Burgess Shale-type faunas in the context of the "Cambrian explosion": a review. J Geol. Soc. Lond. 149, 63 1-636.
- *Conway Morris, S. & Whittington, H.B. 1985. Fossils of the Burgess Shale, a national treasure in Yoho National Park, British Columbia. Geol. Sun'. Can. Miscell. Rep. 43, 1-31.
- Fletcher, T.P. & Collins, D.H. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Rocky Mountains. Canadian J. Earth Sd. 35, 4 13-436.
- Parker, A.R. 1998. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proc. Roy. Soc. Lond. B 265, 967-972.
- Powell, W. 2003. Greenschist-facies metamorphism of the Burgess Shale and its implications for models of fossil formation and preservation. Can. J. Earth Sci. 40, 13-25.
- Powell, W.G. et a!. 2003. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale formation. Palaeogeog. Palaeoclim. Palaeoecol. 201, 249-268.
- Whittington, RB. 1980. The significance of the fauna of the Burgess Shale, Middle Cambrian, British Columbia. Proc. Geol. Assoc. 91, 127-148.
- *Bufferfield, N.J. 1995. Secular distribution of Burgess Shale-type preservation. Lethaia 28, 1-13.
- *Buflerfield, N.J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative Comp. Biol. 43, 166-177. [in Balfour, Zoology]
- Butterfield, N.J. & Nicholas, C.J. 1996. Burgess Shale-type preservation of both non- mineralizing and "shelly" Cambrian organisms from the Mackenzie Mountains, northwestern Canada. I Paleont. 70, 893-899.
- Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Trans. R. Soc. Edinb.: Earth Sci. 80, 27 1-283.
- Lieberman, B.S. 2003. A new soft-bodied fauna: The Pioche Formation of Nevada. I Paleont. 77, 674-690.
- Nedin, C. 1995. The Emu Bay Shale, a Lower Cambrian fossil Lagerstatten [sic], Kangaroo Island, South Australia. Mem. Ass. Australas. Palaeontols. 18, 3 1-40.
- Simonetta, A.M. & Conway Morris, S. (eds). 1991. The early evolution of Metazoa and the sign fIcance ofproblematic taxa. CUP
- Xiao, S-h. et al. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic Shale: A systematic re-assessment of the Miaohe biota, South China. I Paleont. 76, 347-376.
Lecture Eight
Simon Conway Morris
Early metazoan evolution : Introduction
- Adoutte André, Guillaume Balavoine , Nicolas Lartillot and Renaud de Rosa (1999) Animal evolution: the end of the intermediate taxa? Trends in Genetics, Volume 15, Issue 3, 104-108, 1 March
- Budd, G.E.1999. Does evolution in body patterning genese drive morphological change - or vice versa? BioEssays 21, 326-333
- *Budd, G.E. & Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Bio. reviews 75, 253-295
- *Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature 363, 219-225 (reprinted in Gee, H. (ed.). 2000. Shaking the tree ; readings from Nature in the history of life. University of Chicago Press; see pp. 128-146).
- *Conway Morris, S. 2000. The Cambrian "explosion". Slow-fuse or magatonnage? Proc. natl. Acad. Sci. USA 97, 4426-4429
- Conway Morris, S. 2000. Nipping the Cambrian "explosion" in the bud? BioEssays 22, 1053-1056
- Conway Morris, S. 2003. The cambrian "explosion" of metazoans and molecular biology : would Darwin be satisfied? Int. J. developmental Biol. 47, 505-515
- *de Rosa, R. et al 1999.
- Donoghue, P.c.J. et al. 2006. Synchroton x-ray tomographic microscopy of fossil embryos. Nature 442, 680-683
- *Dunn, C.W. et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745-749
- *Erwin, D. H. 1999. The origin of bodyplans. Amer. Zool. 39, 617-629
- *Erwin, D. H. and Davidson, E. H. 2002. The last common bilaterian ancestor. Development 129, 3021-3032
- *Galliot, B. 2000. Conserved and divergent genes in apex and axis development of cnidarians. Curr. Opinion Genetics Dev. 10, 629-637
- Giribet, G. et al. 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.Syst. Biol. 49, 539-562
- *Halanych, K. M. 2004. The new view of animal phylogeny. Ann. review Ecol. Evol. System. 35, 229-256
- Hooge, M. D. et al. 2002. Molecular systematics of the Acoela (Acoelomorpha, Platyhelminthes) and its concordance with morphology Mol. Phylogeny Evoln. 24, 333-342
- Hughes, A. L. and Friedman, R. 2004. Shedding genomic ballast : extensive parallel loss of ancestral gene families in animals. J. Mol. Evoln. 59, 827-833
- Jenner, R. A. 2001. Bilaterian phylogeny and uncritical recycling of morphological data sets. Syst. Biol. 50, 730-742
- Mallatt, J.M. etal 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phyl. Evoln. 31, 178-191
- Rokas, A. et al 2003. Conflicting phylogenetic signals at the base of the metazoan tree. Evol. Dev. 5, 346-359
- Ruiz-Trillo, I. et al 1999. Acoel flatworms : earliest extant bilaterian metazoans, not members of platyhelminthes. Science 283, 1919-1923
- Sempere, L.F. et al 2007. Phylogenetic distribution of micro RNAs support the basal positin of acoel flatworms and the polyphyly of Platyhelminthes. Evol. Dev. 9, 416-431
- *Slack, J.M.W. et al 1993. The zootype and the phylotypic stage. Nature 363, 490-492.
Lophotrochozoans
- Butterfield, N.J.2006. Hooking some stem-group "worms" : fossil lophotrochozoans in the Burgess Shale BioEssays 28, 1161-1166
- Butterfield, N.J. 2008. An early Cambrian radula. J. Paleont. 82, 543-554
- Caron, J-B. and Conway Morris, S. 2007. Halwaxiids and the early evolution of the lophotrochozoans. Science 315, 1255-1258
- Caron, J-B. et al. 2006. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature 442, 159-163
- Cohen, B.L. et al. 1998. Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Phil. trans. R. Soc. Lond. B 353, 2039-2061
- *Conway Morris, S. & Peel, J.S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Phil. Trans. R. Soc. Lond. B347, 305-358
- Eibye-Jacobsen, D. 2004. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia 37, 317-335
- Helmkampf, M. et al. 2008 Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans)confirm the Lophotrochozoa concept . Proc. Roy. Soc. B. Biol Sic. 275, 1927-1933.
- Halanych, K. M. et al. 1995. Evidence from 18S ribosomal DNS that the lophophorates are protostome animals. Science 267, 1641-1643
- Holmer, L.E. et al. 2002. A stem group brachiopod from the Lower Cambrian : support for a Micrina (halkieriid) ancestry. Palaeontology 45, 875-882
- Holmer, L.E. et al. 2008. The early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod. Biol. Letters 4, 724-728
- Jin Yugan et al. 1993. Lower Cambrian pediculate lingulids from Yunnan, China. I Paleont. 67, 788-798.
- *McHugh, D. 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. Natl. A cad. Sd. USA 94, 8006-8009.
- Porter, S.M. 2008. Skeletal microstrucure indicates chancilloriids and halkieriids are closely related. Palaeontology 51, 865-879.
- Skovsted, C.B. et a!. 2008. The scieritome of Eccentrotheca from the Lower Cambrian of South Australia: Lophophorate affinities and implications for tommotiid phylogeny. Geology 36, 171-174.
- Stechmann, A. & Schiegel, M. 1999. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes. Proc. Roy. Soc. Lond. B 266, 2043-2052 [in Balfour (Zoology)].
Ecdysozoans
- Akam, M. 1995. Hox genes and the evolution of diverse body plans. Phil. Trans. R. Soc. Lond. B 349, 313-3 19.
- *Averof, M. 1997. Arthropod evolution: Same Hox genes, different body plans. Current Biol. 7, R634-R636 [available in Balfour (Zoology)].
- Averof, M. and Cohen, S.M. 1997. Evolutionary origin of insect wings from ancestral gills. Nature 385, 627-630.
- *Budd, G. 1993. A Cambrian gilled lobopod from Greenland. Nature 364, 709-711.
- Budd, G.E. 1995. Kleptothule rasmusseni gen. et sp. nov.: an ?olenellid-like trilobite from
the Sirius Passet fauna (Buen Formation, Lower Cambrian, North
Greenland). Trans.
R. Soc. Edinb.: Earth Sd. 86, 1-12. - *Budd, G.E. 1996. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia 29, 1-14.
- *Budd, G.E. 1997. Stem group arthropods from the Lower Cambrian Sirius Passet
fauna of North Greenland. In Arthropod
relationships (eds. R.A. Fortey & R.H. Thomas), pp.
125-138. ChapmanlKluuer. - Budd, G.E. 1999. The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation; Lower Cambrian, N. Greenland). Trans. R. Soc. Edinburgh: Earth Sd. 89, 249-290.
- Budd, G.E. 2002. A palaeontological solution to the artbropod head problem. Nature 417,
271-275. - Collins, D. 1996. The "evolution" of Anomalocaris and its classification in the arthropods Class Dinocarida (Nov.) and Order Radiodonta (Nov.). 1 Paleont. 70, 280-293.
- Dzik, J. & Krumbiegel, G. 1989. The oldest ‘onychophoran' Xenusion: a link connecting phyla? Lethaia 22, 169-182.
- Giribet, G. et al. 2001. Arthropod phylogeny based on eight molecular loci and morphology. Nature4l3, 157-161.
- Grenier, J.K. et al. 1997. Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoranlarthropod clade. Current Biol. 7, 547-553.
- Hou Xianguang & Bergstrom, J. 1995. Cambrian lobopodians - ancestors of extant onychophorans. Zoo!. J. Linn. Soc. 114, 3-19.
- Hou Xianguang & Bergstrom, J. 1997. Arthropods of the Lower Cambrian
Chengjiang fauna, southwest China.
Fossils & Strata 45.
- *Hou Xianguang eta!. 1995. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of Southwest China. GFF 117, 163-183.
- Hwang, U-W. et al. 2001. Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413, 154-157.
- Waloszek, D. et al. 2007. Evolution of cephalic feeding structures and the phylogeny of Artbropoda. Palaeogeog. Palaeoclim. Palaeoeco!. 254, 273-287.
Lecture Nine
Simon Conway Morris
Deuterostomes
- Cameron, C.B. et al. 2000. Evolution of the chordate bodyplan: New insights from phylogenetic analysis of deuterostome phyla. Proc. Nail. Acad. Sd. USA 97, 4469- 4474.
- Caron, J-B. 2005. Banffia constricta, a putative vetulicolid from the Middle Cambrian Burgess Shale. Trans. Roy. Soc. Edinb. Earth Sci. 96, 95-111.
- Chen, J-Y. et al. 1999. An early Cambrian craniate-like chordate. Nature 402, 518-522.
- Conway Morris, S. 2008. A redescription of a rare chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada. I Paleont. 82, 424-430.
- Lacalli, T.C. 2002. Vetulicolians - are they deuterostomes? chordates? BioEssays 24, 208-211.
- Shu D-G. et al. 1996. A Pikaia-like chordate from the Lower Cambrian of China. Nature 384, 157-158.
- *Shu, D.G. et a!. 2000. Lower Cambrian vertebrates from South China. Nature 402, 42-46.
- *Shu, D. et al. 2001. Primitive deuterostomes from the Chengjiang Lagerstatte. Nature 414, 419-424.
- Shu, D.G. et a!. 2003. Head and backbone of the early Cambrian vertebrate Haikouichthys. Nature 421, 526-529.
- Shu, D-G., Conway
Morris, S. et al. 2003.
A new species of yunnanozoan with implications for deuterostome evolution. Science 299,
1380-1384.
*Shu, D.G. et al. 2004. Ancestral echinoderms from the Chengjiang deposits of China. Nature 430, 422-428.
Smith, A.B. 2005. The pre-radial history of echinoderms. Geol. J 40, 255-280.
Swalla, B.J. and Smith, A.B. 2008. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Phil. Trans. Roy. Soc. Lond. B 363,
1557-1568.
The Cambrian "explosion" : real or artefact?
- Canfield, D.E. et al. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92-95.
- Conway Morris, S. 1990. Late Precambrian and Cambrian soft-bodied faunas. Ann. Rev. Earth Planet Sci. 18, 101-122.
- *Conway Morris, 5. 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36, 593-635.
- *Conway Morris, S. 1998. Eggs and embryos from the Cambrian. BioEssays 20, 676-682 [available in Balfour (Zoology)].
- Davidson, E.H. et a!. 1995. Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science 270, 1314-1325.
- Dong, X-p. et a!. 2004. Fossil embryos from the Middle and Late Cambrian period of Hunan, south China. Nature 427, 23 7-240 [see also News & Views, pp. 205-207]
- A.H. & Carroll, S.B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129-2137.
- Martin, M.W. et al. 2000. Age of Neoproterozoic bilatarian [sic] body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science 288, 841-845.
- Ono, K. et a!. 1999. Multiple protein tyrosine phosphatases in sponges and explosive gene duplication in the early evolution of animals before the parazoan-eumetazoan split. J. Mol. Evoin. 48, 654-662.
- Xiao, S-h. 2002. Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos. Paleobiology 28, 244-250.
- *Xiao, S.H. et al. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391, 553-558.
- *Xiao, S.H. & Knoll, A.H. 2000. Phosphatized
animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. I Paleont. 74,
767-788.
S. Conway Morris February 2009
Lecture Ten
Lecture Eleven
G Budd
- Adoutte, A., Balavoine, G., Lartillot, N. & De Rosa, R. (1999). Animal evolution: the end of the intermediate taxa?Trends in Genetics 15: 104-108.
- Ayala, F. J. & Rzhetsky, A. (1998). Origin of the metazoan phyla: Molecular clocks confirm paleontological estimates.Proceedings of the National Academy of Sciences, USA 95: 606-611.
- Bavaloine, G. & Adoutte, A. (1998). One or three Cambrian radiations? Science 280: 397-398.
- *Carroll, S. B., Grenier, J. K. and Weatherbee, S. D. (2001) From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Scientific, Oxford.
- *Donoghue, P. C. J. & Smith, M. P., (Ed.) (2003). Telling the Evolutionary Time: molecular clocks and the fossil record, CRC Press, London, 288pp
- * Dunn, F. E., Moy, V. N., Angerer, L. M., Angerer, R. C., Morris, R. L. and Peterson, K. J. (2007). Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian. Evolution and Development 9: 10-24.
- De Rosa, R., J.K. Grenier, T. Andreeva, C. Cook, A. Adoutte, M. Akam, S.B. Carroll, G. Balavoine (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399: 772-776.
- Jacobs, D.K. (1990). Selector genes and the Cambrian radiation of Bilateria. PNAS 87: 4406-4410.
- Knoll, A.H. and S.B. Carroll (1999). Early animal evolution: Emerging perspectives from comparative biology and the geologic record . Science, 284: 2129-2137.
- Peterson, K. J. & Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution and Development 3: 170-205.
- Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M.J. and McPeek, M.A. (2004). Estimating metazoan divergence times with a molecular clock. PNAS 101: 6536-6541.
- Runnegar, B. (1982). A molecular clock model for the origin of animal phyla. Lethaia 15: 199-205.
- *Smith, A. B. & Peterson, K. J. (2002). Dating the time of origin of major clades: molecular clocks and the fossil record.Annual Reviews in Earth and Planetary Science 30: 65-88.
Lecture Twelve
G Budd
- Aguidaldo et al (1997) Evidence for a clade of nematodes, arthorpods and other mounlting animalsNature 387:489-493
- Budd, GE (2002) A palaeontological solution to the arthropod head problemNature, 417 (6886): 271-275
- Budd, GE (2001) Tardigrades as 'stem-group arthropods': The evidence from the Cambrian faunaZoologischer Anzeiger, 240 (3-4): 265-279
- Budd, GE (1999) The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland) Transactions of the Royal Society of Edinburgh Earth Sciences, 89: 249-290
- Budd, GE (1998) Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle Lethaia, 31 (3): 197-210
- Budd, GF (1996) The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group Lethaia, 29 (1): 1-14
- Chen et al (2004) A new ‘great appendage’ arthropod from the Lower Cambrian of china and homology of chelicerae and raptorial antero-ventral appendagesLethaia 37:3-20
- Cotton & Braddy (2004) The phylogeny of arachnomorph arthropods and the origin of the Chelicerata Trans. R. Soc. Edinburgh: Earth Sci 94: 169-193
- Edgecombe & Ramskold (1999) Relationships of Cambrian Arachnata and the systematic position of TrilobitaJournal of Paleontology 73: 263-287
- Eriksson et al (2003) Head development in the Onychophoran Euperipatoides kanangrensis with particular reference to the central nervous systemJournal of Morphology 255: 1-23
- Giribet et al (2001) Arthropod phylogeny based on eight molecular loci and morphologyNature 413:157-161
- Hwang et al (2001) Mitochondrial protein phylogeny joins myriapods with cheliceratesNature 413: 154-157
- Maas & Waloszek (2001) Cambrian derivatives of the early arthropod stem lineage, pentastomids, tardigrades and lobopodians – an ‘Orsten’ perspective. Zoologishcer Anzeiger 240: 451-459
- Mittamn & Scholz (2003) Development of the nervous system in the ‘head’ of Limulus polyphemus (Chelicerate, Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of MandibulataDevelopments Genes Evolution 213:9-17
- Panganiban et al (1995) The development of crisstacean limbs and the evolution of arthropodsScience 270: 1363-1366
- Popadic et al (1998) Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structuresDev Genes Evol. 208: 142-150
- Ramskold & Hou (1991) New early Cambrian animal and onychophoran affinities of enigmatic metazoans Nature 351: 225-228
- Rempel (1975) The evolution of the insect head: the endless dispute Quaest Ent 11: 7-25
- Schmidt-Rhaesa et al (1998) The position of the Arthropoda in the phylogenetic systemJournal of Morphology 238: 263-285
- Scholtz, G. (2002) The Articulata hypothese – or what is a segment?Org Divers Evol. 2: 197-215
- Scholtz, G & Edgecombe (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidenceDevelopment, Genes and Evolution 216: 395-415
- Telfod & Thomas (1998) Expression of homeobox genes show chelicerate arthropods retain their deutocerebral segmentPNAS 95: 10671-10675
- Walossek & Muller (1990) Upper Cambrian stem-lineage crustaceans and their bearing upon the monophyletic origin of Crustacea and the position of Agnostus Lethaia 23: 409-427
- Whittington (1975) Trilobites with appendages from the Middle Cambrian Burgess Shale, British Columbia Fossils and Strata 4: 97-136
Lecture Thirteen
G Budd
- *Budd, G. E. (2000). Nature, Nurture - and fossils. Palaeontological Association Newsletter 44: 15-18.
- *Budd, G. E. (1999). Does evolution in body-patterning genes drive morphological change or vice versa?BioEssays 21:326-332.
- Budd, G. E. (2001). Why are arthropods segmented? Evolution & Development 3:332-342.
- *Budd, G. E. (2006). On the origin and evolution of major morphological characters. Biological Reviews 81: 609-628.
- Cairns-Smith, A. G. (1985). Seven clues to the origin of life. Cambridge University Press.
- Csete, M. E. & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science 295: 1664-1669.
- *Davidson, E. H., Peterson, K. J. & Cameron, R. A. (1995). Origin of bilaterian body plans – evolution of developmental regulatory mechanisms. Science 270: 1319-1325.
- Force, A., Lynch, M., Pickett. F. B., Amores, A., Yan, Y. L. & Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545.
- Galis, F. (2001). Key innovations and radiations. IN: The character concept in evolution (ed. G. P. Wagner), pp. 581-605. Academic Press.
- *Gellon, G. & McGinnis, W. (1998). Shaping animal body plans in development and evolution by modulation of Hox expression patterns. BioEssays 20: 116-125.
- Müller, G. B. & Newman, S. A. (1999). Generation, integration, autonomy: three steps in the evolution of homology. IN: Homology (eds G. R. Bock and G. Cardew), pp. 65-73, John Wiley & Sons.
- Müller, G. B. & Newman, S. A. (eds) (2003). Origination of organismal form: beyond the gene in developmental and evolutionary biology, MIT Press.
- Riedl, R. (1978). Order in Living Organisms: A Systems Analysis of Evolution. John Wiley & Sons.
- *Robert, J. S. (2001). Interpreting the homeobox: metaphors of gene action and activation in development and evolution. Evolution & Development 3, 287–295.
- *Schwenk, K. (1994). A utilitarian approach to evolutionary constraint. Zoology 98: 251-262.
- Seilacher, A. (1991) Self-organizing mechanisms in morphogenesis and evolution. IN: Constructional morphology and evolution (eds. N. Schmidt-Kittler and K. Vogel), pp. 251-271. Springer-Verlag.
- *Stern, D. L. (2000). Evolution: Developmental biology and the problem of variation. Evolution 54: 1079-1091.
- Stone, J. R. & Telford, M. (1999). Using critical path method to analyse the radiation of rudist bivalves. Palaeontology 42: 231-242.
- *Thornhill, R. H. & Ussery, D. W. (2000). A classification of possible routes of Darwinian evolution. Journal of Theoretical Biology 203: 111-116.
- Valentine, J. W. & May, J. (1996). Hierarchies in biology and paleontology. Paleobiology 22: 23-33.
- Valentine, J. W. (1995). Why no new phyla after the Cambrian - genome and ecospace hypotheses revisited.Palaios 10: 190-194.
- *von Dassow, G. & Munro, E. (1999). Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. Journal of Experimental Zoology 285: 307-325.
- Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution 7: 118-126.
- Waddington, C. H. (1956). Genetic assimilation of the bithorax phenotype. Evolution 10: 1-13.
- Waddington, C. H. (1961). Genetic assimilation. Advances in Genetics. 10:257-290.
- Wagner, G. P. & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution 50:967-976.
- Wagner, G. P. & Laubichler, M. D. (2004). Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plans and evolvability. J Exp Zoolog B Mol Dev Evol 302: 92-102.
- Wagner, G. P. & Schwenk, K. (2000). Evolutionarily stable configurations: Functional integration and the evolution of phenotypic stability. Evolutionary Biology 31:155-217.
- Wagner, G. P. (1989). The biological homology concept. Annual Reviews of Ecology and Systematics 20:51-69.
- Wagner, G. P. (ed.) (2001). The character concept in evolutionary biology. Academic Press.
- Wagner, G. P., Booth, G. & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution 51:329-347.
- *Weiss, K. M. & Fullerton, S. M. (2000). Phenogenetic drift and the evolution of genotype-phenotype relationships. Theoretical Population Biology 57:187-195.
Lecture Fourteen
G Narbonne
- Anderson & Conway Morris (1982) A review, with description of four unusual forms, of the soft-bodied fauna of the Conception and ST. John’s groups (Late Precambrian), Avaoln Peninsula, Newfoundland. Proceedings of the Third North American Paleontological convention v. 1, p 1-8
- Anderson and Misra (11968) fossils found in the Precambrian Conception Group in southeastern Newfoundland Nature v. 220, p680-681
- *Canfield, Poulton & Narbonne (2007) Late-Neoproterozoic deep ocean oxygenation and the rise of animal life. Science 315: 92-95.
- *Clapham & Narbonne (2002) Ediacaran epifaunal tieringGeology 30: 627-630
- Clapham, Narbonne & Gehling (2003) Paleoecology of the oldest known animal communities: Ediacaran assemblages t Mistaken Point, NewfoundlandPaleobiology 29: 527-544
- *Fike et al (2006) Oxidation of the Ediacaran oceanNature 444, 744-747
- Gehling, Narbonne & Anderson (2000) The first names Ediacaran body fossiul Aspidella terranovicaPalaeontology 43: 427-456
- *Hofmann et al (1990) Ediacaran remains from intertillite beds in northwestern CanadaGeology 18: 1199-1202
- Laflamme, Narbonne & Anderson (2004) Morphometrics of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology 78: 827-837
- Misra (1969) Late Precambrian (?) fossils from southeastern Newfoundland. Geological society of America Bulletin 80: 2133-2140
- Myrow (1995) Neoproterozoic rocks of the Newfoundland Avalon Zone. Precambrian Research 73:123-136
- *Narbonne, GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystemsAnnual Review of Earth and Planetary Science Letters 33: 421-442
- *Narbonne, GM (2004) Modular construction of complex early Ediacaran life formsScience 305: 1141-1144
- *Narbonne, GM & Gehling, JG (2003) Life after snowball: the oldest complex Ediacaran fossilsGeology 31: 27-30
- Seilacher, A. (1989) Vendozoa:organismic construdtion in the Proterzoic biosphere Lethaia 22: 229-239
- Seilacher, A. (1992) Vendobionta and Psammocorallia: lost constructions of Precambrian evolution Journal of the Geological Society London. 149: 607-613
- Seilacher, A. (1999) Biomat-related lifestyles in the PrecambrianPalaios 14: 86-93
- Wood et al (2003) Environmental analysis of the late Neoproterozoic Mistaken Point and Trepassey Formations, southeastern Newfoundland: paleobiological and tectonic implications. Canadian Journal of Earth Sciences 40: 1375-1391.
Lecture Fifteen
DG
- Glaessner, MF (1984) The dawn of animal life CUP
- Gehling, JG (1991) The case for Ediacatan fossil roots to the Metazoan tree. IN: Radhakrishna, BP (ed) The world of Martin F. Glaessner,Memoir, Geological Society of India 20: 181-223, Geological Society of India, Bangalore
- Seilacher, A. (1992). Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London 149:607–613.
- Runnegar, B. (1995) Vendobionta or Metazoa? Developments in understanding the Ediacara ‘fauna’ Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 195: 303-318
- Waggoner, BM (1999) Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology 25: 440-458
- Budd, G. E. and Jensen, S. (2000). A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75:253–295.
- Waggoner, BM (2003) The Ediacaran biotas in space and time. Integrative and Comparative Biology 43: 104-113
- Seilacher, Grazhdankin & Legouta (2003) Ediacaran Biota: the dawn of animal life in the shadow of giant protists. Palaeontological Research 7: 43-54
- Narbonne, G. M. (2004). Modular construction of early Ediacaran complex life forms. Science 305:1141–1144.
- Brasier, M. and Antcliffe, J. (2004). Decoding the Ediacaran enigma. Science 305:1115–1117.
- Narbonne, G. M. (2005). The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Science 33: 421-42
- Wade, M. (1968) Preservation of soft-bodied animals in Precambrian sandstones at Ediacara, South Australia Lethaia 1: 238-267
- Gehling, JG (1988) A cnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia Alcheringa 12: 299-314
- Seilacher (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22, 229-239
- Gehling (1999) Microbial mats in the Terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14: 40-57
- Grazhdankin, DV (2000) The Ediacaran genue Inaria: a taphonomic/morphodynamic analysis. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 216: 1-34
- Gehling, Narbonne & Anderson (2000) The first names Ediacaran body fossiul Aspidella terranovicaPalaeontology 43: 427-456
- Grazhdankin, DV, Seilacher (2002) Underground Vendobionta from NamibiaPalaeontology 45: 57-78
- Jenkins (1992) Functional and ecological aspects of Ediacaran assemblages. IN Lipps, JH & Signor, PW (eds) origin and early evolution of the Metazoa. Pp131-176. Plenum Press
- Seilacher, A. (1999) Biomat-related lifestyles in Precambrian. Palaios 14: 86-93
- Dzik, J. (2003) Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and comparative Biology 43: 114-126
- Clapham, Narbonne & Gehling (2003) Paleoecology of the oldest known animal communities: Ediacaran assemblages t Mistaken Point, NewfoundlandPaleobiology 29: 527-544
- Grazhdankin, D. (2004). Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution.Paleobiology 30:203–221.
- Droser, Gehling & Jensen (2006) Assemblage palaeoecology of the Ediacara biota: the unabridged edition?Palaeogeogaphy, Palaeoclimatology, Palaeoecology 232: 131-147
Last updated on 07-Feb-13 10:25