skip to primary navigationskip to content
 

Reading Lists

Reading lists for Core (part II) & Option (part III) courses These are updated as & when possible; if you see any mistakes please contact the library

Part II - Core 1 Geophysics

C1: Geophysics Core Course

Lecture 1 - James Jackson

  • Molnar and Chen (1982), Seismicity and mountain building, in: Mountain building processes (Ed. K. Hsu), Academic Press, London, p41-57

Lecture 2

Lecture 3 

Lecture 4

Lecture 5

Lecture 6

  • Newman, A.V., 2011. Hidden depths. Nature 474, 441–443. doi:10.1038/474441a

Lecture 7

  • Turcotte, D.L., Schubert G., 2016. Geodynamics. URL https://www.scribd.com/doc/189096877/Geo-Dynamics (accessed 3.20.16).

Lecture 8

  • Richter, F., McKenzie, D., 1978. Simple plate models of mantle convection.

Lecture 9

Lectures 10-13 - Nicky White

  • *Fowler, C. M. R. The Solid Earth: An Introduction to Global Geophysics. Second Edition ; 16th printing. Cambridge: Cambridge Univ. Press, 1990.
  • Kennett, Brian L. N. Interpretation of Seismograms on Regional and Global Scales. The Seismic Wavefield, B. L. N. Kennett ; Vol. 2. Cambridge: Cambridge Univ. Press, 2002.
  • Kennett, Brian Leslie Norman. The Seismic Wavefield. Cambridge New York: Cambridge University Press, 2001.
  • Lay, Thorne, and Terry C. Wallace, eds. Modern Global Seismology. Nachdr. International Geophysics Series 58. San Diego, Calif. [u.a.]: Academic Press, 1995.
  • Mooney, Walter D., Gabi Laske, and T. Guy Masters. “CRUST 5.1: A Global Crustal Model at 5° × 5°.” Journal of Geophysical Research: Solid Earth 103, no. B1 (January 10, 1998): 727–47. https://doi.org/10.1029/97JB02122.
  • Shearer, Peter M. Introduction to Seismology. Cambridge: Cambridge Univ. Press, 1999.
  • Zhao, W., J. Mechie, L. D. Brown, J. Guo, S. Haines, T. Hearn, S. L. Klemperer, et al. “Crustal Structure of Central Tibet as Derived from Project INDEPTH Wide-Angle Seismic Data.” Geophysical Journal International 145, no. 2 (May 2001): 486–98. https://doi.org/10.1046/j.0956-540x.2001.01402.x.

Lecture 14 - Nick Rawlinson

  • Lay, Thorne, and Terry C. Wallace, eds. Modern Global Seismology. Nachdr. International Geophysics Series 58. San Diego, Calif. [u.a.]: Academic Press, 1995.
  • Rawlinson, N., J. Hauser, and M. Sambridge. “Seismic Ray Tracing and Wavefront Tracking in Laterally Heterogeneous Media.” Advances in Geophysics 49 (2008): 203–73. https://doi.org/10.1016/S0065-2687(07)49003-3.
  • Stein, Seth, and Michael Wysession. An Introduction to Seismology, Earthquakes, and Earth Structure. Nachdr. Malden, Mass.: Blackwell, 2003.

Lecture 16

  • Lay, Thorne, and Terry C. Wallace, eds. Modern Global Seismology. Nachdr. International Geophysics Series 58. San Diego, Calif. [u.a.]: Academic Press, 1995.
  • Stein, Seth, and Michael Wysession. An Introduction to Seismology, Earthquakes, and Earth Structure. Nachdr. Malden, Mass.: Blackwell, 2003.

Lecture 17

  • Fichtner, Andreas, Brian L. N. Kennett, Heiner Igel, and Hans-Peter Bunge. "Full Seismic Waveform Tomography for Upper-Mantle Structure in the Australasian Region Using Adjoint Methods." Geophysical Journal International 179, no. 3 (December 2009): 1703–25. https://doi.org/10.1111/j.1365-246X.2009.04368.x.
  • Fishwick, S., and N. Rawlinson. "3-D Structure of the Australian Lithosphere from Evolving Seismic Datasets." Australian Journal of Earth Sciences 59, no. 6 (August 2012): 809–26. https://doi.org/10.1080/08120099.2012.702319.
  • Hill, Graham J., T. Grant Caldwell, Wiebke Heise, Darren G. Chertkoff, Hugh M. Bibby, Matt K. Burgess, James P. Cull, and Ray A. F. Cas. "Distribution of Melt beneath Mount St Helens and Mount Adams Inferred from Magnetotelluric Data." Nature Geoscience 2, no. 11 (November 2009): 785–89. https://doi.org/10.1038/ngeo661.
  • Kahraman, Metin, David G. Cornwell, David A. Thompson, Sebastian Rost, Gregory A. Houseman, Niyazi Türkelli, Uğur Teoman, Selda Altuncu Poyraz, Murat Utkucu, and Levent Gülen. "Crustal-Scale Shear Zones and Heterogeneous Structure beneath the North Anatolian Fault Zone, Turkey, Revealed by a High-Density Seismometer Array." Earth and Planetary Science Letters 430 (November 2015): 129–39. https://doi.org/10.1016/j.epsl.2015.08.014.
  • Li, Chang, Robert D. van der Hilst, E. Robert Engdahl, and Scott Burdick. "A New Global Model for P Wave Speed Variations in Earth's Mantle." Geochemistry, Geophysics, Geosystems 9, no. 5 (May 2008): n/a-n/a. https://doi.org/10.1029/2007GC001806.
  • Pilia, S., N. Rawlinson, N.G. Direen, A.M. Reading, R. Cayley, L. Pryer, P. Arroucau, and M. Duffett. "Linking Mainland Australia and Tasmania Using Ambient Seismic Noise Tomography: Implications for the Tectonic Evolution of the East Gondwana Margin." Gondwana Research 28, no. 3 (October 2015): 1212–27. https://doi.org/10.1016/j.gr.2014.09.014.
  • Rawlinson, N., S. Pozgay, and S. Fishwick. "Seismic Tomography: A Window into Deep Earth." Physics of the Earth and Planetary Interiors 178, no. 3–4 (February 2010): 101–35. https://doi.org/10.1016/j.pepi.2009.10.002.

 

Lecture 18

 

  • Cohen, Benjamin E., Darren F. Mark, Stewart J. Fallon, and P. Jon Stephenson. “Holocene-Neogene Volcanism in Northeastern Australia: Chronology and Eruption History.” Quaternary Geochronology 39 (April 2017): 79–91. https://doi.org/10.1016/j.quageo.2017.01.003.
  • Conrad, Clinton P., Todd A. Bianco, Eugene I. Smith, and Paul Wessel. “Patterns of Intraplate Volcanism Controlled by Asthenospheric Shear.” Nature Geoscience 4, no. 5 (May 2011): 317–21. https://doi.org/10.1038/ngeo1111.
  • Davies, D. R., N. Rawlinson, G. Iaffaldano, and I. H. Campbell. “Lithospheric Controls on Magma Composition along Earth’s Longest Continental Hotspot Track.” Nature 525, no. 7570 (September 2015): 511–14. https://doi.org/10.1038/nature14903.
  • Davies, D. Rhodri, and Nicholas Rawlinson. “On the Origin of Recent Intraplate Volcanism in Australia.” Geology 42, no. 12 (December 2014): 1031–34. https://doi.org/10.1130/G36093.1.
  • Rawlinson, N., D. R. Davies, and S. Pilia. “The Mechanisms Underpinning Cenozoic Intraplate Volcanism in Eastern Australia: Insights from Seismic Tomography and Geodynamic Modeling: INTRAPLATE VOLCANISM IN AUSTRALIA.” Geophysical Research Letters 44, no. 19 (October 16, 2017): 9681–90. https://doi.org/10.1002/2017GL074911.

Lecture 19 - John Rudge

  • Bercovici, D. “Mantle Dynamics: An Introduction and Overview.” Treatise on Geophysics 7 (2015): 1–22. https://doi.org/10.1016/B978-0-444-53802-4.00125-1. This is available at the Betty & Gordon Moore Library
  • Davies, Geoffrey F. Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge: Cambridge University Press, 1999. https://doi.org/10.1017/CBO9780511605802.
  • Daveis, Geoffrey F. Mantle Convection for Geologists. Cambridge: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511973413.
  • McKenzie, D. P. “The Earth’s Mantle.” Scientific American 249, no. 3 (September 1983): 66–78. https://doi.org/10.1038/scientificamerican0983-66.
  • McKenzie, D. P., and Frank Richter. “Convection Currents in the Earth’s Mantle.” Scientific American 235, no. 5 (November 1976): 72–89. https://doi.org/10.1038/scientificamerican1176-72.
  • Rose, Ian R. “Interactive Earth,” n.d. http://ian-r-rose.github.io/interactive_earth/.
  • Schubert, Gerald, Donald L. Turcotte, and Peter Olson. Mantle Convection in the Earth and Planets. Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511612879.

Lecture 20

  • Crosby, A. G., and D. McKenzie. “An Analysis of Young Ocean Depth, Gravity and Global Residual Topography.” Geophysical Journal International 178, no. 3 (September 2009): 1198–1219. https://doi.org/10.1111/j.1365-246X.2009.04224.x.
  • *Crosby, A. G., D. McKenzie, and J. G. Sclater. “The Relationship between Depth, Age and Gravity in the Oceans.” Geophysical Journal International 166, no. 2 (August 2006): 553–73. https://doi.org/10.1111/j.1365-246X.2006.03015.x.
  • Hoggard, M. J., N. White, and D. Al-Attar. “Global Dynamic Topography Observations Reveal Limited Influence of Large-Scale Mantle Flow.” Nature Geoscience 9, no. 6 (June 2016): 456–63. https://doi.org/10.1038/ngeo2709.
  • Jones, Stephen M., Bryan Lovell, and Alistair G. Crosby. “Comparison of Modern and Geological Observations of Dynamic Support from Mantle Convection.” Journal of the Geological Society 169, no. 6 (November 2012): 745–58. https://doi.org/10.1144/jgs2011-118.

Lecture 21

  • *Allègre, Claude J., Albrecht Hofmann, and Keith O’Nions. “The Argon Constraints on Mantle Structure.” Geophysical Research Letters 23, no. 24 (December 1, 1996): 3555–57. https://doi.org/10.1029/96GL03373.
  • Bercovici, David, Gerald Schubert, and Paul J. Tackley. “On the Penetration of the 660 Km Phase Change by Mantle Downflows.” Geophysical Research Letters 20, no. 23 (December 14, 1993): 2599–2602. https://doi.org/10.1029/93GL02691.
  • Ding, Xiao-Yang, and Stephen P. Grand. “Seismic Structure of the Deep Kurile Subduction Zone.” Journal of Geophysical Research: Solid Earth 99, no. B12 (December 10, 1994): 23767–86. https://doi.org/10.1029/94JB02130.
  • *Fukao, Yoshio, and Masayuki Obayashi. “Subducted Slabs Stagnant above, Penetrating through, and Trapped below the 660 Km Discontinuity: SUBDUCTED SLABS IN THE TRANSITION ZONE.” Journal of Geophysical Research: Solid Earth 118, no. 11 (November 2013): 5920–38. https://doi.org/10.1002/2013JB010466.
  • Galer, S.J.G., S.L. Goldstein, and R.K. O’Nions. “Limits on Chemical and Convective Isolation in the Earth’s Interior.” Chemical Geology 75, no. 4 (June 1989): 257–90. https://doi.org/10.1016/0009-2541(89)90001-6.
  • Grand, Stephen P. “Mantle Shear Structure beneath the Americas and Surrounding Oceans.” Journal of Geophysical Research: Solid Earth 99, no. B6 (June 10, 1994): 11591–621. https://doi.org/10.1029/94JB00042.
  • *Hofmann, A. W. “Mantle Geochemistry: The Message from Oceanic Volcanism.” Nature 385, no. 6613 (January 1997): 219–29. https://doi.org/10.1038/385219a0.
  • Isacks, Bryan, and Peter Molnar. “Mantle Earthquake Mechanisms and the Sinking of the Lithosphere.” Nature 223, no. 5211 (September 1969): 1121–24. https://doi.org/10.1038/2231121a0.
  • Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst. “Joint Seismic Tomography for Bulk Sound and Shear Wave Speed in the Earth’s Mantle.” Journal of Geophysical Research: Solid Earth 103, no. B6 (June 10, 1998): 12469–93. https://doi.org/10.1029/98JB00150.
  • Lundgren, Paul, and Domenico Giardini. “Isolated Deep Earthquakes and the Fate of Subduction in the Mantle.” Journal of Geophysical Research 99, no. B8 (1994): 15833. https://doi.org/10.1029/94JB00038.
  • Rudge, John F., John Maclennan, and Andreas Stracke. “The Geochemical Consequences of Mixing Melts from a Heterogeneous Mantle.” Geochimica et Cosmochimica Acta 114 (August 2013): 112–43. https://doi.org/10.1016/j.gca.2013.03.042.
  • White, William M. “Isotopes, DUPAL, LLSVPs, and Anekantavada.” Chemical Geology 419 (December 2015): 10–28. https://doi.org/10.1016/j.chemgeo.2015.09.026.
  • Wit, R. W. L. de, J. Trampert, and R. D. van der Hilst. “Toward Quantifying Uncertainty in Travel Time Tomography Using the Null-Space Shuttle: ROBUSTNESS IN TRAVEL TIME TOMOGRAPHY.” Journal of Geophysical Research: Solid Earth 117, no. B3 (March 2012). https://doi.org/10.1029/2011JB008754.
  • Zindler, A, and S Hart. “Chemical Geodynamics.” Annual Review of Earth and Planetary Sciences 14, no. 1 (May 1986): 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425.

Lecture 22

  • McKenzie, Dan. “The Relationship between Topography and Gravity on Earth and Venus.” Icarus 112, no. 1 (November 1994): 55–88. https://doi.org/10.1006/icar.1994.1170.
  • McKenzie, Dan, David N. Barnett, and Dah-Ning Yuan. “The Relationship between Martian Gravity and Topography.” Earth and Planetary Science Letters 195, no. 1–2 (January 2002): 1–16. https://doi.org/10.1016/S0012-821X(01)00555-6.
  • McKenzie, Dan, Peter G. Ford, Fang Liu, and Gordon H. Pettengill. “Pancakelike Domes on Venus.” Journal of Geophysical Research 97, no. E10 (1992): 15967. https://doi.org/10.1029/92JE01349.
  • *Nimmo, F., and D. McKenzie. “Volcanism and Tectonics on Venus.” Annual Review of Earth and Planetary Sciences 26, no. 1 (May 1998): 23–51. https://doi.org/10.1146/annurev.earth.26.1.23.

Lecture 23 - David Al-Attar

  • Al-Attar, David, John H. Woodhouse, and Arwen Deuss. “Calculation of Normal Mode Spectra in Laterally Heterogeneous Earth Models Using an Iterative Direct Solution Method: Calculating Normal Mode Spectra.” Geophysical Journal International 189, no. 2 (May 2012): 1038–46. https://doi.org/10.1111/j.1365-246X.2012.05406.x.
  • Bozdağ, Ebru, Daniel Peter, Matthieu Lefebvre, Dimitri Komatitsch, Jeroen Tromp, Judith Hill, Norbert Podhorszki, and David Pugmire. “Global Adjoint Tomography: First-Generation Model.” Geophysical Journal International 207, no. 3 (December 1, 2016): 1739–66. https://doi.org/10.1093/gji/ggw356.
  • Deuss, A., Woodhouse, J., 2001. Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth’s Mantle. Science 294, 354–357. doi:10.1126/science.1063524
  • French, S. W., and B. A. Romanowicz. “Whole-Mantle Radially Anisotropic Shear Velocity Structure from Spectral-Element Waveform Tomography.” Geophysical Journal International 199, no. 3 (December 1, 2014): 1303–27. https://doi.org/10.1093/gji/ggu334.
  • Fukao, Y., Obayashi, M., 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 2013JB010466. doi:10.1002/2013JB010466.
  • Liu, Qinya, and Jeroen Tromp. “Finite-Frequency Sensitivity Kernels for Global Seismic Wave Propagation Based upon Adjoint Methods.” Geophysical Journal International 174, no. 1 (July 2008): 265–86. https://doi.org/10.1111/j.1365-246X.2008.03798.x.
  • Ritsema, J. “Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland.” Science 286, no. 5446 (December 3, 1999): 1925–28. https://doi.org/10.1126/science.286.5446.1925.
  • Woodhouse, J., and D. Giardini. “Inversion for the Splitting Function of Isolated Low Order Normal Mode Multiplets.” EOS 66 (1985).
  • Woodhouse, John H., and Adam M. Dziewonski. “Mapping the Upper Mantle: Three-Dimensional Modeling of Earth Structure by Inversion of Seismic Waveforms.” Journal of Geophysical Research: Solid Earth 89, no. B7 (July 10, 1984): 5953–86. https://doi.org/10.1029/JB089iB07p05953.

Lecture 24

  • Austermann, Jacqueline, Jerry X. Mitrovica, Peter Huybers, and Alessio Rovere. “Detection of a Dynamic Topography Signal in Last Interglacial Sea-Level Records.” Science Advances 3, no. 7 (July 2017): e1700457. https://doi.org/10.1126/sciadv.1700457.
  • Crawford, Ophelia, David Al-Attar, Jeroen Tromp, Jerry X Mitrovica, Jacqueline Austermann, and Harriet C P Lau. “Quantifying the Sensitivity of Post-Glacial Sea Level Change to Laterally Varying Viscosity.” Geophysical Journal International 214, no. 2 (August 1, 2018): 1324–63. https://doi.org/10.1093/gji/ggy184.
  • Hoggard, M. J., N. White, and D. Al-Attar. “Global Dynamic Topography Observations Reveal Limited Influence of Large-Scale Mantle Flow.” Nature Geoscience 9, no. 6 (June 2016): 456–63. https://doi.org/10.1038/ngeo2709.
  • Zhu, H., Bozdag, E., Peter, D., Tromp, J., 2012. Structure of the European upper mantle revealed by adjoint tomography. Nature Geosci 5, 493–498. doi:10.1038/ngeo1501

 

 

Part II - Core 2 Ancient Life and Environments

Michaelmas Reading List - Core 2: Ancient Life and Environments

Please note that in many cases, only the references marked with an asterisk (*) in handouts are listed here; they have been highlighted by your lecturers as being particularly useful to you.

 

Lectures 2-4: Neil Davies

 

Lecture 2

  • Andrews, J. E., I. Boomer, I. Bailiff, P. Balson, C. Bristow, P. N. Chroston, B. M. Funnell, et al. “Sedimentary Evolution of the North Norfolk Barrier Coastline in the Context of Holocene Sea-Level Change.” Geological Society, London, Special Publications 166, no. 1 (2000): 219–51. https://doi.org/10.1144/GSL.SP.2000.166.01.12.
  • Flemming, Burghard W. “Siliciclastic Back-Barrier Tidal Flats.” In Principles of Tidal Sedimentology, edited by Richard A. Davis and Robert W. Dalrymple, 231–67. Dordrecht: Springer Netherlands, 2012. https://doi.org/10.1007/978-94-007-0123-6_10.

 

Lecture 3

  • Myrow, P. M., M. P. Lamb, and R. C. Ewing. “Rapid Sea Level Rise in the Aftermath of a Neoproterozoic Snowball Earth.” Science 360, no. 6389 (May 11, 2018): 649–51. https://doi.org/10.1126/science.aap8612.
  • Reynaud, Jean-Yves, and Robert W. Dalrymple. “Shallow-Marine Tidal Deposits.” In Principles of Tidal Sedimentology, edited by Richard A. Davis and Robert W. Dalrymple, 335–69. Dordrecht: Springer Netherlands, 2012. https://doi.org/10.1007/978-94-007-0123-6_13.
  • Spencer, Thomas, Susan M. Brooks, Ben R. Evans, James A. Tempest, and Iris Möller. “Southern North Sea Storm Surge Event of 5 December 2013: Water Levels, Waves and Coastal Impacts.” Earth-Science Reviews 146 (July 2015): 120–45. https://doi.org/10.1016/j.earscirev.2015.04.002.
  • Straaten, L.M.J.U. van, and P.H. Kuenen. Accumulation of Fine Grained Sediments in the Dutch Waddensea, 1957.

 

Lecture 4

  • Bartholdy, Jesper. “Salt Marsh Sedimentation.” In Principles of Tidal Sedimentology, edited by Richard A. Davis and Robert W. Dalrymple, 151–85. Dordrecht: Springer Netherlands, 2012. https://doi.org/10.1007/978-94-007-0123-6_8.
  • Cuadrado, Diana G., Gerardo M.E. Perillo, and Alejandro J. Vitale. “Modern Microbial Mats in Siliciclastic Tidal Flats: Evolution, Structure and the Role of Hydrodynamics.” Marine Geology 352 (June 2014): 367–80. https://doi.org/10.1016/j.margeo.2013.10.002.
  • Davies, Neil S., Alexander G. Liu, Martin R. Gibling, and Randall F. Miller. “Resolving MISS Conceptions and Misconceptions: A Geological Approach to Sedimentary Surface Textures Generated by Microbial and Abiotic Processes.” Earth-Science Reviews 154 (March 2016): 210–46. https://doi.org/10.1016/j.earscirev.2016.01.005.
  • Dorgan, K. M. “The Biomechanics of Burrowing and Boring.” Journal of Experimental Biology 218, no. 2 (January 15, 2015): 176–83. https://doi.org/10.1242/jeb.086983.
  • Dorgan, Kelly, Peter Jumars, Bruce Johnson, and Bernard Boudreau. Macrofaunal Burrowing: The Medium Is the Message. Vol. 44, 2006.
  • Gerdes, Gisela, Thomas Klenke, and Nora Noffke. “Microbial Signatures in Peritidal Siliciclastic Sediments: A Catalogue.” Sedimentology 47, no. 2 (2000): 279–308. https://doi.org/10.1046/j.1365-3091.2000.00284.x.
  • Gingras, Murray K., and James A. MacEachern. “Tidal Ichnology of Shallow-Water Clastic Settings.” In Principles of Tidal Sedimentology, edited by Richard A. Davis and Robert W. Dalrymple, 57–77. Dordrecht: Springer Netherlands, 2012. https://doi.org/10.1007/978-94-007-0123-6_4.
  • Gunnell, J. R., A. B. Rodriguez, and B. A. McKee. “How a Marsh Is Built from the Bottom Up.” Geology 41, no. 8 (August 1, 2013): 859–62. https://doi.org/10.1130/G34582.1.
  • Malarkey, Jonathan, Jaco H. Baas, Julie A. Hope, Rebecca J. Aspden, Daniel R. Parsons, Jeff Peakall, David M. Paterson, et al. “The Pervasive Role of Biological Cohesion in Bedform Development.” Nature Communications 6, no. 1 (May 2015). https://doi.org/10.1038/ncomms7257.

 

Lectures 5-7: Hal Bradbury

 

 Lecture 5

  • Cuadrado, Diana G., Gerardo M.E. Perillo, and Alejandro J. Vitale. “Modern Microbial Mats in Siliciclastic Tidal Flats: Evolution, Structure and the Role of Hydrodynamics.” Marine Geology 352 (June 2014): 367–80. https://doi.org/10.1016/j.margeo.2013.10.002.
  • Friedrich, M. W., and K. W. Finster. “How Sulfur Beats Iron.” Science 344, no. 6187 (May 30, 2014): 974–75. https://doi.org/10.1126/science.1255442.
  • Froelich, P.N., G.P. Klinkhammer, M.L. Bender, N.A. Luedtke, G.R. Heath, Doug Cullen, Paul Dauphin, Doug Hammond, Blayne Hartman, and Val Maynard. “Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis.” Geochimica et Cosmochimica Acta 43, no. 7 (July 1979): 1075–90. https://doi.org/10.1016/0016-7037(79)90095-4.
  • Nealson, Kenneth H. “SEDIMENT BACTERIA: Who’s There, What Are They Doing, and What’s New?” Annual Review of Earth and Planetary Sciences 25, no. 1 (May 1997): 403–34. https://doi.org/10.1146/annurev.earth.25.1.403.
  • Nielsen, Lars Peter, Nils Risgaard-Petersen, Henrik Fossing, Peter Bondo Christensen, and Mikio Sayama. “Electric Currents Couple Spatially Separated Biogeochemical Processes in Marine Sediment.” Nature 463, no. 7284 (February 2010): 1071–74. https://doi.org/10.1038/nature08790.

 

Lecture 6

  • Antler, Gilad, Alexandra V. Turchyn, Barak Herut, Alicia Davies, Victoria C.F. Rennie, and Orit Sivan. “Sulfur and Oxygen Isotope Tracing of Sulfate Driven Anaerobic Methane Oxidation in Estuarine Sediments.” Estuarine, Coastal and Shelf Science 142 (April 2014): 4–11. https://doi.org/10.1016/j.ecss.2014.03.001.
  • Mills, Jennifer. “Microbially-Mediated Cryptic Sulfur Cycling in Salt Marsh Sediments: Evidence and Implications.” MPhil, University of Cambridge, 2014.
  • Mills, Jennifer V., Gilad Antler, and Alexandra V. Turchyn. “Geochemical Evidence for Cryptic Sulfur Cycling in Salt Marsh Sediments.” Earth and Planetary Science Letters 453 (November 2016): 23–32. https://doi.org/10.1016/j.epsl.2016.08.001.

 

Lecture 7

  • Beck, Melanie, Olaf Dellwig, Jan M. Holstein, Maik Grunwald, Gerd Liebezeit, Bernhard Schnetger, and Hans-Jürgen Brumsack. “Sulphate, Dissolved Organic Carbon, Nutrients and Terminal Metabolic Products in Deep Pore Waters of an Intertidal Flat.” Biogeochemistry 89, no. 2 (June 2008): 221–38. https://doi.org/10.1007/s10533-008-9215-6.
  • Beck, Melanie, Olaf Dellwig, Gerd Liebezeit, Bernhard Schnetger, and Hans-Jürgen Brumsack. “Spatial and Seasonal Variations of Sulphate, Dissolved Organic Carbon, and Nutrients in Deep Pore Waters of Intertidal Flat Sediments.” Estuarine, Coastal and Shelf Science 79, no. 2 (August 2008): 307–16. https://doi.org/10.1016/j.ecss.2008.04.007.
  • Beck, Melanie, Jürgen Köster, Bert Engelen, Jan M. Holstein, Antje Gittel, Martin Könneke, Thomas Riedel, et al. “Deep Pore Water Profiles Reflect Enhanced Microbial Activity towards Tidal Flat Margins.” Ocean Dynamics 59, no. 2 (April 2009): 371–83. https://doi.org/10.1007/s10236-008-0176-z.
  • Bishop, Tom, Alexandra V. Turchyn, and Orit Sivan. “Fire and Brimstone: The Microbially Mediated Formation of Elemental Sulfur Nodules from an Isotope and Major Element Study in the Paleo-Dead Sea.” Edited by Melanie R. Mormile. PLoS ONE 8, no. 10 (October 1, 2013): e75883. https://doi.org/10.1371/journal.pone.0075883.
  • Jansen, Stefan, Eva Walpersdorf, Ursula Werner, Markus Billerbeck, Michael E Böttcher, and Dirk de Beer. “Functioning of Intertidal Flats Inferred from Temporal and Spatial Dynamics of O2, H2S and PH in Their Surface Sediment.” Ocean Dynamics 59, no. 2 (April 2009): 317–32. https://doi.org/10.1007/s10236-009-0179-4.
  • Kostka, Joel E., Alakendra Roychoudhury, and Philippe Van Cappellen. “Rates and Controls of Anaerobic Microbial Respiration across Spatial and Temporal Gradients in Saltmarsh Sediments.” Biogeochemistry 60, no. 1 (August 1, 2002): 49–76. https://doi.org/10.1023/A:1016525216426.
  • Orsi, William D. “Ecology and Evolution of Seafloor and Subseafloor Microbial Communities.” Nature Reviews Microbiology 16, no. 11 (November 2018): 671–83. https://doi.org/10.1038/s41579-018-0046-8.
  • Riedinger, Natascha, Benjamin Brunner, Sebastian Krastel, Gail L. Arnold, Laura M. Wehrmann, Michael J. Formolo, Antje Beck, et al. “Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine Depositional System: The Argentine Continental Margin.” Frontiers in Earth Science 5 (May 9, 2017). https://doi.org/10.3389/feart.2017.00033.

 

Lecture 8: Neil Davies

 

Lecture 8

  • Davies, Neil S., and Anthony P. Shillito. “Incomplete but Intricately Detailed: The Inevitable Preservation of True Substrates in a Time-Deficient Stratigraphic Record.” Geology 46, no. 8 (August 1, 2018): 679–82. https://doi.org/10.1130/G45206.1.
  • Davies, Neil S., Anthony P. Shillito, and William J. Mcmahon. “Short-Term Evolution of Primary Sedimentary Surface Textures (Microbial, Abiotic, Ichnological) on a Dry Stream Bed: Modern Observations and Ancient Implications.” PALAIOS 32, no. 3 (March 2017): 125–34. https://doi.org/10.2110/palo.2016.064.
  • Miall, Andrew D. “Updating Uniformitarianism: Stratigraphy as Just a Set of ‘Frozen Accidents.’” Geological Society, London, Special Publications 404, no. 1 (2015): 11–36. https://doi.org/10.1144/SP404.4.
  • Paola, Chris, Vamsi Ganti, David Mohrig, Anthony C. Runkel, and Kyle M. Straub. “Time Not Our Time: Physical Controls on the Preservation and Measurement of Geologic Time.” Annual Review of Earth and Planetary Sciences 46, no. 1 (May 30, 2018): 409–38. https://doi.org/10.1146/annurev-earth-082517-010129.
  • Peters, Shanan E., and Jon M. Husson. “Sediment Cycling on Continental and Oceanic Crust.” Geology 45, no. 4 (April 2017): 323–26. https://doi.org/10.1130/G38861.1.
  • Trabucho-Alexandre, João. “More Gaps than Shale: Erosion of Mud and Its Effect on Preserved Geochemical and Palaeobiological Signals.” Geological Society, London, Special Publications 404, no. 1 (2015): 251–70. https://doi.org/10.1144/SP404.10.

 

Lectures 9-11: Alex Liu

 

Lectures 9-10

  • Bekker, A., and H.D. Holland. “Oxygen Overshoot and Recovery during the Early Paleoproterozoic.” Earth and Planetary Science Letters 317–318 (February 2012): 295–304. https://doi.org/10.1016/j.epsl.2011.12.012.
  • Canfield, D. E. “A New Model for Proterozoic Ocean Chemistry.” Nature 396, no. 6710 (December 1998): 450–53. https://doi.org/10.1038/24839.
  • Dupont, C. L., A. Butcher, R. E. Valas, P. E. Bourne, and G. Caetano-Anolles. “History of Biological Metal Utilization Inferred through Phylogenomic Analysis of Protein Structures.” Proceedings of the National Academy of Sciences 107, no. 23 (June 8, 2010): 10567–72. https://doi.org/10.1073/pnas.0912491107.
  • Kump, L. R., C. Junium, M. A. Arthur, A. Brasier, A. Fallick, V. Melezhik, A. Lepland, A. E. CCrne, and G. Luo. “Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event.” Science 334, no. 6063 (December 23, 2011): 1694–96. https://doi.org/10.1126/science.1213999.
  • Lyons, Timothy W., Christopher T. Reinhard, Gordon D. Love, and Shuhai Xiao. “Geobiology of the Proterozoic Eon.” In Fundamentals of Geobiology, edited by Andrew H. Knoll, Donald E. Canfield, and Kurt O. Konhauser, 371–402. Chichester, UK: John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9781118280874.ch20.
  • Planavsky, Noah J., Peter McGoldrick, Clinton T. Scott, Chao Li, Christopher T. Reinhard, Amy E. Kelly, Xuelei Chu, Andrey Bekker, Gordon D. Love, and Timothy W. Lyons. “Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean.” Nature 477, no. 7365 (September 2011): 448–51. https://doi.org/10.1038/nature10327.
  • Raiswell, Robert, and Donald E. Canfield. “Section 3. Iron Diagenesis and the C-S-Fe Geochemical Indicators.” Geochemical Perspectives 1, no. 1 (January 1, 2012): 19–41.
  • Reinhard, Christopher T., Timothy W. Lyons, Olivier Rouxel, Dan Asael, Nicolas Dauphas, and Lee R. Kump. “7.10.4 Iron Speciation and Isotope Perspectives on Paleoproterozoic Water Column Chemistry.” In Reading the Archive of Earth’s Oxygenation, Vol. 3. Springer, 2012.

Lecture 11

  • Anbar, A. D. “Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?” Science 297, no. 5584 (August 16, 2002): 1137–42. https://doi.org/10.1126/science.1069651.
  • Canfield, D. E., S. W. Poulton, A. H. Knoll, G. M. Narbonne, G. Ross, T. Goldberg, and H. Strauss. “Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry.” Science 321, no. 5891 (August 15, 2008): 949–52. https://doi.org/10.1126/science.1154499.
  • Canfield, D. E., S. W. Poulton, and G. M. Narbonne. “Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life.” Science 315, no. 5808 (January 5, 2007): 92–95. https://doi.org/10.1126/science.1135013.
  • Derry, Louis A. “A Burial Diagenesis Origin for the Ediacaran Shuram–Wonoka Carbon Isotope Anomaly.” Earth and Planetary Science Letters 294, no. 1–2 (May 2010): 152–62. https://doi.org/10.1016/j.epsl.2010.03.022.
  • Fike, D. A., J. P. Grotzinger, L. M. Pratt, and R. E. Summons. “Oxidation of the Ediacaran Ocean.” Nature 444, no. 7120 (December 2006): 744–47. https://doi.org/10.1038/nature05345.
  • Guilbaud, Romain, Simon W. Poulton, Nicholas J. Butterfield, Maoyan Zhu, and Graham A. Shields-Zhou. “A Global Transition to Ferruginous Conditions in the Early Neoproterozoic Oceans.” Nature Geoscience 8, no. 6 (June 2015): 466–70. https://doi.org/10.1038/ngeo2434.
  • Halverson, Galen P., Paul F. Hoffman, Daniel P. Schrag, Adam C. Maloof, and A. Hugh N. Rice. “Toward a Neoproterozoic Composite Carbon-Isotope Record.” Geological Society of America Bulletin 117, no. 9 (2005): 1181. https://doi.org/10.1130/B25630.1.
  • Hoffman, P. F. “A Neoproterozoic Snowball Earth.” Science 281, no. 5381 (August 28, 1998): 1342–46. https://doi.org/10.1126/science.281.5381.1342.
  • Kirschvink, J. L. “Evidence for a Large-Scale Reorganization of Early Cambrian Continental Masses by Inertial Interchange True Polar Wander.” Science 277, no. 5325 (July 25, 1997): 541–45. https://doi.org/10.1126/science.277.5325.541.
  • Konhauser, Kurt O., Ernesto Pecoits, Stefan V. Lalonde, Dominic Papineau, Euan G. Nisbet, Mark E. Barley, Nicholas T. Arndt, Kevin Zahnle, and Balz S. Kamber. “Oceanic Nickel Depletion and a Methanogen Famine before the Great Oxidation Event.” Nature 458, no. 7239 (April 2009): 750–53. https://doi.org/10.1038/nature07858.
  • Lenton, Timothy M., Richard A. Boyle, Simon W. Poulton, Graham A. Shields-Zhou, and Nicholas J. Butterfield. “Co-Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era.” Nature Geoscience 7, no. 4 (April 2014): 257–65. https://doi.org/10.1038/ngeo2108.
  • Lubick, Naomi. “Snowball Fights.” Nature 417, no. 6884 (May 1, 2002): 12–13. https://doi.org/10.1038/417012a.
  • Planavsky, Noah J., Peter McGoldrick, Clinton T. Scott, Chao Li, Christopher T. Reinhard, Amy E. Kelly, Xuelei Chu, Andrey Bekker, Gordon D. Love, and Timothy W. Lyons. “Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean.” Nature 477, no. 7365 (September 2011): 448–51. https://doi.org/10.1038/nature10327.
  • Schrag, Daniel P., John. A. Higgins, Francis A. Macdonald, and David T. Johnston. “Authigenic Carbonate and the History of the Global Carbon Cycle.” Science 339, no. 6119 (February 1, 2013): 540–43. https://doi.org/10.1126/science.1229578.
  • Shields, Graham A., and Benjamin J. W. Mills. “Tectonic Controls on the Long-Term Carbon Isotope Mass Balance.” Proceedings of the National Academy of Sciences 114, no. 17 (April 25, 2017): 4318–23. https://doi.org/10.1073/pnas.1614506114.
  • Steinberger, Bernhard, and Trond H. Torsvik. “Absolute Plate Motions and True Polar Wander in the Absence of Hotspot Tracks.” Nature 452, no. 7187 (April 2008): 620–23. https://doi.org/10.1038/nature06824.

 

Lectures 12-23: Nick Butterfield

 

Lecture 12

  • Buick, Roger. “Geobiology of the Archean Eon.” In Fundamentals of Geobiology, edited by Andrew H. Knoll, Donald E. Canfield, and Kurt O. Konhauser, 351–70. Chichester, UK: John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9781118280874.ch19.
  • Konhauser, Kurt. Introduction to Geomicrobiology. Nachdr. Malden, Mass.: Blackwell, 2007.

 

Lectures 13-14

  • Falkowski, P. G., T. Fenchel, and E. F. Delong. “The Microbial Engines That Drive Earth’s Biogeochemical Cycles.” Science 320, no. 5879 (May 23, 2008): 1034–39. https://doi.org/10.1126/science.1153213.
  • Kasting, James F., and Donald E. Canfield. “The Global Oxygen Cycle.” In Fundamentals of Geobiology, edited by Andrew H. Knoll, Donald E. Canfield, and Kurt O. Konhauser, 93–104. Chichester, UK: John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9781118280874.ch7.
  • Lyons, Timothy W., Christopher T. Reinhard, Gordon D. Love, and Shuhai Xiao. “Geobiology of the Proterozoic Eon.” In Fundamentals of Geobiology, edited by Andrew H. Knoll, Donald E. Canfield, and Kurt O. Konhauser, 371–402. Chichester, UK: John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9781118280874.ch20.

 

Lecture 15

  • Butterfield, Nicholas J. “Early Evolution of the Eukaryota.” Edited by Andrew Smith. Palaeontology 58, no. 1 (January 2015): 5–17. https://doi.org/10.1111/pala.12139.
  • Butterfield, Nicholas J. “Proterozoic Photosynthesis - a Critical Review.” Edited by Barry Lomax. Palaeontology 58, no. 6 (November 2015): 953–72. https://doi.org/10.1111/pala.12211.
  • Lyons, Timothy W., Christopher T. Reinhard, Gordon D. Love, and Shuhai Xiao. “Geobiology of the Proterozoic Eon.” In Fundamentals of Geobiology, edited by Andrew H. Knoll, Donald E. Canfield, and Kurt O. Konhauser, 371–402. Chichester, UK: John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9781118280874.ch20.

 

Lectures 16-17

  • Butterfield, Nicholas J. “The Neoproterozoic.” Current Biology 25, no. 19 (October 2015): R859–63. https://doi.org/10.1016/j.cub.2015.07.021.
  • Lenton, Timothy M., Richard A. Boyle, Simon W. Poulton, Graham A. Shields-Zhou, and Nicholas J. Butterfield. “Co-Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era.” Nature Geoscience 7, no. 4 (April 2014): 257–65. https://doi.org/10.1038/ngeo2108.
  • Xiao, Shuhai, and Marc Laflamme. “On the Eve of Animal Radiation: Phylogeny, Ecology and Evolution of the Ediacara Biota.” Trends in Ecology & Evolution 24, no. 1 (January 2009): 31–40. https://doi.org/10.1016/j.tree.2008.07.015.

 

Lectures 18-19

  • Budd, G. E., and S. Jensen. “A Critical Reappraisal of the Fossil Record of the Bilaterian Phyla.” Biological Reviews of the Cambridge Philosophical Society 75, no. 2 (May 2000): 253–95.
  • Budd, Graham E., and Sören Jensen. “The Origin of the Animals and a ‘Savannah’ Hypothesis for Early Bilaterian Evolution: Early Evolution of the Animals.” Biological Reviews 92, no. 1 (February 2017): 446–73. https://doi.org/10.1111/brv.12239.
  • Budd, Graham E., and Maximilian J. Telford. “The Origin and Evolution of Arthropods.” Nature 457, no. 7231 (February 2009): 812–17. https://doi.org/10.1038/nature07890.
  • Butterfield, N. J. “Exceptional Fossil Preservation and the Cambrian Explosion.” Integrative and Comparative Biology 43, no. 1 (February 1, 2003): 166–77. https://doi.org/10.1093/icb/43.1.166.
  • Butterfield, Nicholas J., Uwe Balthasar, and Lucy A. Wilson. “Fossil Diagenesis in the Burgess Shale.” Palaeontology 50, no. 3 (May 2007): 537–43. https://doi.org/10.1111/j.1475-4983.2007.00656.x.
  • Butterfield, N.J., and T.H.P. Harvey. “Small Carbonaceous Fossils (SCFs): A New Measure of Early Paleozoic Paleobiology.” Geology 40, no. 1 (January 2012): 71–74. https://doi.org/10.1130/G32580.1.
  • Erwin, D. H., M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson. “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals.” Science 334, no. 6059 (November 25, 2011): 1091–97. https://doi.org/10.1126/science.1206375.
  • Mangano, M. G., and L. A. Buatois. “Decoupling of Body-Plan Diversification and Ecological Structuring during the Ediacaran-Cambrian Transition: Evolutionary and Geobiological Feedbacks.” Proceedings of the Royal Society B: Biological Sciences 281, no. 1780 (February 12, 2014): 20140038–20140038. https://doi.org/10.1098/rspb.2014.0038.
  • Morris, Simon Conway, and Jean-Bernard Caron. “A Primitive Fish from the Cambrian of North America.” Nature 512, no. 7515 (August 2014): 419–22. https://doi.org/10.1038/nature13414.
  • Morris, Simon Conway. “Pikaia Gracilens Walcott, a Stem-Group Chordate from the Middle Cambrian of British Columbia.” Biological Reviews 87, no. 2 (May 2012): 480–512. https://doi.org/10.1111/j.1469-185X.2012.00220.x.
  • Ortega-Hernández, Javier. “Lobopodians.” Current Biology 25, no. 19 (October 2015): R873–75. https://doi.org/10.1016/j.cub.2015.07.028.
  • Sansom, Robert S., Sarah E. Gabbott, and Mark A. Purnell. “Non-Random Decay of Chordate Characters Causes Bias in Fossil Interpretation.” Nature 463, no. 7282 (February 2010): 797–800. https://doi.org/10.1038/nature08745.
  • Seilacher, Adolf. “Biomat-Related Lifestyles in the Precambrian.” PALAIOS 14, no. 1 (February 1999): 86. https://doi.org/10.2307/3515363.
  • Smith, Martin R. “Ontogeny, Morphology and Taxonomy of the Soft-Bodied Cambrian ‘Mollusc’ Wiwaxia.” Edited by Phil Lane. Palaeontology 57, no. 1 (January 2014): 215–29. https://doi.org/10.1111/pala.12063.
  • Smith, Martin R., Thomas H. P. Harvey, and Nicholas J. Butterfield. “The Macro- and Microfossil Record of the Cambrian Priapulid Ottoia.” Edited by Artem Kouchinsky. Palaeontology 58, no. 4 (July 2015): 705–21. https://doi.org/10.1111/pala.12168.
  • Tarhan, Lidya G., Mary L. Droser, Noah J. Planavsky, and David T. Johnston. “Protracted Development of Bioturbation through the Early Palaeozoic Era.” Nature Geoscience 8, no. 11 (November 2015): 865–69. https://doi.org/10.1038/ngeo2537.

 

Lectures 20-21

  • Servais, Thomas, and David A.T. Harper. “The Great Ordovician Biodiversification Event (GOBE): Definition, Concept and Duration.” Lethaia 51, no. 2 (April 2018): 151–64. https://doi.org/10.1111/let.12259.

 

Lecture 22

  • Butterfield, N. J. “Oxygen, Animals and Aquatic Bioturbation: An Updated Account.” Geobiology 16, no. 1 (January 2018): 3–16. https://doi.org/10.1111/gbi.12267.
  • Butterfield, Nicholas J. “Animals and the Invention of the Phanerozoic Earth System.” Trends in Ecology & Evolution 26, no. 2 (February 2011): 81–87. https://doi.org/10.1016/j.tree.2010.11.012.

 

Lecture 23

  • Jenkins, Jon M., Joseph D. Twicken, Natalie M. Batalha, Douglas A. Caldwell, William D. Cochran, Michael Endl, David W. Latham, et al. “Discovery and Validation of Kepler-452b: A 1.6-Re Super Earth Exoplanet in the Habitable Zone of a G2 Star.” The Astronomical Journal 150, no. 2 (July 23, 2015): 56. https://doi.org/10.1088/0004-6256/150/2/56.
  • Krissansen-Totton, Joshua, Stephanie Olson, and David C. Catling. “Disequilibrium Biosignatures over Earth History and Implications for Detecting Exoplanet Life.” Science Advances 4, no. 1 (January 2018): eaao5747. https://doi.org/10.1126/sciadv.aao5747.
  • Levin, Gilbert V., and Patricia Ann Straat. “The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment.” Astrobiology 16, no. 10 (October 2016): 798–810. https://doi.org/10.1089/ast.2015.1464.

 

Lecture 24: Neil Davies

 

Lecture 24

  • Buatois, Luis, and M. Gabriela Mangano. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511975622.
  • Davies, Neil S., and Martin R. Gibling. “The Sedimentary Record of Carboniferous Rivers: Continuing Influence of Land Plant Evolution on Alluvial Processes and Palaeozoic Ecosystems.” Earth-Science Reviews 120 (May 2013): 40–79. https://doi.org/10.1016/j.earscirev.2013.02.004.
  • Djokic, Tara, Martin J. Van Kranendonk, Kathleen A. Campbell, Malcolm R. Walter, and Colin R. Ward. “Earliest Signs of Life on Land Preserved in ca. 3.5 Ga Hot Spring Deposits.” Nature Communications 8, no. 1 (August 2017). https://doi.org/10.1038/ncomms15263.
  • Dunlop, Jason A., Gerhard Scholtz, and Paul A. Selden. “Water-to-Land Transitions.” In Arthropod Biology and Evolution, edited by Alessandro Minelli, Geoffrey Boxshall, and Giuseppe Fusco, 417–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-642-36160-9_16.
  • Greb, Stephen F., William A. DiMichele, and Robert A. Gastaldo. “Evolution and Importance of Wetlands in Earth History.” In Wetlands through Time, by Stephen F. Greb and William A. DiMichele. Geological Society of America, 2006. https://doi.org/10.1130/2006.2399(01).
  • Kenrick, P., C. H. Wellman, H. Schneider, and G. D. Edgecombe. “A Timeline for Terrestrialization: Consequences for the Carbon Cycle in the Palaeozoic.” Philosophical Transactions of the Royal Society B: Biological Sciences 367, no. 1588 (February 19, 2012): 519–36. https://doi.org/10.1098/rstb.2011.0271.
  • Wellman, Charles H., and Paul K. Strother. “The Terrestrial Biota Prior to the Origin of Land Plants (Embryophytes): A Review of the Evidence.” Edited by Andrew Smith. Palaeontology 58, no. 4 (July 2015): 601–27. https://doi.org/10.1111/pala.12172.

Part II - Core 3 Petrology

Reading List - Core 3 (2019)

 

Reading list for Tim Holland - Metamorphic topics, 6 Lectures

 

General reading

  • A Philpotts and J Ague. ‘Principles of Igneous and Metamorphic Petrology’.
  • R Vernon and G Clarke. ‘Principles of Metamorphic Petrology’.

 

Schreinemakers/projections (1 & 2)

  • Nordstrom & Munoz. 1985. ‘Geochemical thermodynamics’. Chapter 4. (good intro)
  • Yardley, B. 1989. ‘An introduction to metamorphic petrology’. Appendix. (basic intro)
  • Spear 1993. ‘Metamorphic phase equilibria and pressure-temperature-time paths’. Chapters 5, 8.
  • Philpotts and Ague. ‘Principles of Igneous and Metamorphic Petrology’. Chapter 8.

 

Pelites (1 & 2)

 

Mixed volatile equilibria (3)

 

Granulite facies (4 & 5)

Also a useful guide on the web from Dave Waters:
http://www.earth.ox.ac.uk/?davewa/research/granmig.html

 

Oxidation/reduction and fluids (6)

 

Eclogite facies (7)

  • Holland, 1979. High water activities in the generation of high pressure kyanite eclogites of the Tauern Window, Austria. Journal of Geology 87, 1–27.
  • Chopin et al., 1991. Geology and petrology of the coesite-bearing terrain, Dora Maira massif, Western Alps. Eur J Min 3, 263–291. doi: 10.1127/ejm/3/2/0263
  • Rubatto et al., 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geosci, 4, 338–342, doi:10.1038/ngeo1124.
  • von Blanckenburg, F, Davies, J.H. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 14, 120–131. doi:10.1029/94TC02051
  • Dale J. and Holland TJB. 2003. Geothermobarometry, P–T paths and metamorphic field gradients of high-pressure rocks from the Adula Nappe, Central Alps. J Met Geol 21, 813–829. doi: 10.1046/j.1525-1314.2003.00483.x
  • Rebay et al., 2010. Calculated phase equilibria for a MORB composition in a P–T range 450-650C and 18-28 kbar: the stability of eclogite. J Met Geol 28, 635–64. doi: 10.1111/j.1525-1314.2010.00882.x
  • Smye, Greenwood and Holland. 2010. Garnet–chloritoid–kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts. J Met Geol 28, 753–76. doi:  10.111/j.1525-1314.2010.00889.x
  • Smye et al., 2011. Rapid formation and exhumation of the youngest Alpine eclogites: A thermal conundrum to Barrovian metamorphism. Earth & Plan. Sci. Lett. 306, 193–204. doi: 10.1016/j.epsl.2011.03.037
  • Warren et al., 2008. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth & Plan. Sci. Lett. 267, 129–14. doi: 10.1016/j.epsl.2007.11.025
  • Schmid et al., 2004. https://earth.unibas.ch/tecto/research/TRANSMED/TRANSMED_all_textfig_correctedII.pdf

 

Metasomatism (8)

  • Brady 1977. Metasomatic zones in metamorphic rocks. Geochim. Cosmochim. Acta., 41, 113-125. doi: 10.1016/0016-7037(77)90191-0
  • Glassley W 1983. Deep crustal Carbonates as CO2 Fluid sources: evidence from metasomatic reaction zones. Cont. Min. Pet. 84, 15–24. doi: 10.1007/BF01132326
  • Thompson AB 1975. Calc-silicate diffusion zones between marble and pelitic schist. J Petrol 16, 314–34. doi: 10.1093/petrology/16.1.314. 
  • Fisher G 1978. Rate laws in metamorphism. Geochim. Cosmochim. Acta, 42, 1035–1050. doi: 10.1016/0016-7037(78)90292-2
  • Miller et al. 2009. Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface. Lithos 107, 53–67. doi: 10.1016/j.lithos.2008.07.015
  • Philpotts & Ague. Chapter 21.

 

Marian Holness - Lectures 7- 11 Igneous Petrography

This is an introductory course on microstructures and how we can use them to interpret rock history, with particular application to igneous rocks. It is a vast subject and we can only touch on a few essential things. These general source books are a good place to look things up.

 General sources 

  • Granitic Pegmatites (2012) Elements, vol. 8, number 4. There are many interesting articles touching on issues of crystal growth.
  • Cashman, K. V. (1990). Textural constraints on the kinetics of crystallization of igneous rocks. Reviews in mineralogy and geochemistry, 24, 259-314. This is a heavy-weight but comprehensive account.
  • Higgins, M.D. (2006) Quantitative textural measurements in igneous and metamorphic petrology. CUP. A good source if you are thinking of doing microstructural work in your Part III project
  • Kretz, R. (1994) Metamorphic Crystallisation. Wiley.
  • Porter, D.A. & Easterling, K.E. (1981) Phase transformations in metals and alloys. (B 30.107)
  • Tiller, W.A. (1977) On the cross-pollenation of crystallisation ideas between metallurgy and geology. Physics and Chemistry of Minerals, 2, 125-151.
  • Vernon, R.H. (2004) A practical guide to rock microstructure. CUP. £34.99. Highly recommended, especially if you are planning to do a hard-rock PhD. This book is pretty much the first place to look if you need to understand any particular microstructure.

 

Crystal nucleation and growth

Topics covered in this introduction include nucleation (homogenous and heterogeneous, including the effects of pore size in nucleation inhibition) and crystal growth mechanisms. The balance between nucleation and growth determines the overall grain size and grain size distribution in the rock.

The reading list provides an entry into research into the controls on microstructure. You might want to start your reading with a perusal of Vernon’s (2004) book on microstructures.

Nucleation and crystal growth

  • Cashman, K.V. & Mangan, M.T. (2014) A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes, Professional Paper 1801-9
  • Cesare, B., Ferrero, S., Salvioli,-Mariani, E., Pedron, D. & Cavallo, A. (2009) “Nanogranite” and glassy inclusions: the anatectic melt in migmatites and granulites. Geology, 37: 627-630.
  • Davis, M.J., & Ihinger, P.D. (1998) Heterogeneous nucleation on bubbles in silicate melt. American Mineralogist, 83, 1008-1015.
  • Hammer, J.E., Sharp, T.G. & Wessel, P. (2010) Heterogeneous nucleation and epitaxial crystal growth of magmatic minerals. Geology, 38, 367-370.
  • Katz, M.G. & Cashman, K.V. (2003) Hawaiian lava flows in the third dimension: identification and interpretation of pahoehoe and ‘a’a distribution in the KP-1 and SOH-4 cores. Geochemistry, Geophysics Geosystems, 4: 8705, doi:10.1029/2001GC000209
  •  Kirkpatrick, R.J. (1981) Kinetics of crystallization of igneous rocks. Mineralogical Society of America, Reviews in Mineralogy, 8, 321-398.
  • Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation. Contributions to Mineralogy and Petrology, 99, 277-291.
  • Putnis, A & Mauthe, G. (2001) The effect of pore size on cementation in porous rocks. Geofluids, 1, 37-41.
  • Roselle, G.T., Baumgartner, L.P. & Chapman, J.A. (1997) Nucleation-dominated crystallisation of forsterite in the Ubehebe Peak contact aureole, California. Geology, 25, 823-826.
  • Swanson, S.E. (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. American Mineralogist, 62, 966-978.

 Crystal size distributions

 Pattern formation during grain growth (relevant to the first practical)

Crystal shape

In this lecture we cover the controls on crystal shape, starting with interface-controlled growth and moving onto diffusion-limited growth. The practical following the lecture gives you the opportunity to look at rocks with dendritic and spherulitic microstructures. There is also a suite of samples demonstrating the progressive metamorphism of chert nodules in dolomite, with the onset of pattern formation at olivine-grade.

The basics of diffusion-limited growth

  • Porter, D.A. & Easterling, K.E. (1981) Phase transformations in metals and alloys. Chapter 4 (B 30.107 or on Moodle)

Morphology 

 Eutectics and pegmatites

 

 Textural equilibrium

Once reaction is over, and if the rock is not being deformed rapidly, microstructures evolve towards a minimum energy state, in which grain shape and the topology of minor phases (such as fluid) are controlled by interfacial energies. If we know something about the relative magnitudes of interfacial energies we can make predictions about what these microstructures look like and therefore predict how fluids move through the Earth.

The practical provides the opportunity to examine microstructures from well-equilibrated environments and to develop a feel for the length- and time-scales over which interfacial energies affect microstructure.

 Theory of textural equilibrium

Applications to natural systems

  • Bruhn, D., Groebner, N. & Kohlstedt, D.L. (2000) An interconnected network of core-forming melts produced by shear deformation. Nature, 403: 883-886.
  • Cheadle, M.J., Elliott, M.T. and McKenzie, D. (2004) Percolation threshold and permeability of crystallising igneous rocks: the importance of textural equilibrium. Geology, 32, 757-760.
  • Ghanbarzadeh, S., Hesse, M.A., Prodanovic, M. & Gardner, J.E. (2015) Deformation-assisted fluid percolation in rock salt. Science, 350: 1069-1072.
  • Holness, M.B. (2006) Melt-solid dihedral angles of common minerals in natural rocks. Journal of Petrology, 47, 791-800.
  • Hunter, R.H. (1987) Textural equilibrium in layered igneous rocks. In: (ed. Parsons, I.) Origins of igneous layering. Dordrecht: D. Reidel. pp. 473–503.
  • Laporte, D., Rapaille, C. & Provost, A. (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths. In: Granite: From segregation of melt to emplacement fabrics. (eds. Bouchez, J.-L., Hutton, D.H. & Stephens, W.E.) pp. 31-54. Kluwer Acad., Norwell, Mass.
  • Laporte, D. & Watson, E.B. (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chemical Geology, 124, 161-184.
  • Minarik, W.G. & Watson, E.B. (1995) Interconnectivity of carbonate melt at low melt fraction. Earth and Planetary Science Letters, 133, 423-437.
  • Shi, C.Y. et al. (2013) Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nature Geoscience, 6: 971-975.

 

Microstructural evolution in cumulates

This lecture shows how we can apply our understanding of nucleation and crystal growth to decoding the solidification history of plutonic rocks. We will focus primarily on large (>1000m) bodies of mafic magma, in which gravitationally-driven separation of solids from residual liquid drives fractionation. Key to understanding the processes occurring during solidification is observation of incompletely solidified material such as drillcore through lava lakes and glassy crystalline nodules.

 

 Physical processes in cumulates

Microstructures in cumulates and their interpretation

 

Layered Intrusions: Rum and Skaergaard

This lecture provides an introduction to layered intrusions, using two end-members. The classic Skaergaard intrusion is the one that started it all (and incidentally resulted in a hiatus in our developing understanding of magma plumbing systems as it is so iconic that no-one could imagine anything looking or behaving different to Skaergaard), forming from closed-system fractionation. The Rum magma chamber was likely to have been more typical of what we imagine shallow-level magma storage immediately feeding the overlying volcano.

 The practical session will provide the opportunity to examine the classic fractionation sequence developed in the Skaergaard.

What is a magma chamber?

  • Cashman, K.V., Sparks, R.S.J. & Blundy, J.D. (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355: eaag3055

Rum

Skaergaard

Marie Edmonds - Lectures 12-14, Volcanic Processes

Pre-eruptive magma storage

General textbooks

  • Igneous and Metamorphic Petrology, by Myron Best, Wiley.
  • Principles of Igneous and Metamorphic Petrology, by Philpotts and Ague, Cambridge University Press.
  • Igneous Petrology, by McBirney, Jones and Bartlett.
  • Fundamentals of physical volcanology, by Parfitt and Wilson, Blackwell
  • Ore Deposit Geology, by Ridley, Cambridge University Press

Review/general papers

  • Cashman KV, Sparks RS. How volcanoes work: A 25 year perspective. Geological Society of America Bulletin. 2013 May 1;125(5-6):664-90.
  • Gonnermann, H., and M. Manga (2006), The fluid mechanics inside a volcano, Annual Reviews or Fluid Mechanics, 39, 321-356.
  • Scandone, R., K. Cashman, and S. Malone (2007), Magma supply, magma ascent and the style of volcanic eruptions, Earth and Planetary Science Letters, 253(3-4), 513-529.
  • Marsh, B. (1989), Magma chambers, Annual Review of Earth and Planetary Sciences, 17, 439-474.
  • Grove TL, Kinzler RJ. Petrogenesis of andesites. Annual Review of Earth and Planetary Sciences. 1986;14:417.
  • Turner SP, George RM, Evans PJ, Hawkesworth CJ, Zellmer GF. Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2000 May 15;358(1770):1443-64.
  • Bachmann O, Bergantz GW. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology. 2004 Aug 1;45(8):1565-82.

Magma degassing and ore deposits

Textbooks

  • *Fundamentals of Physical Volcanology, written by: Liz Parfitt, Lionel Wilson. Wiley.

Reviews/special volumes of journals:

Reviews in Mineralogy and Geochemistry:

  • Sulfur in Magmas and Melts, v. 73, 2011.
  • Minerals, Inclusions and Volcanic Processes v. 69, 2008.
  • Volatiles in Magmas, v. 30, 1994

Specific papers:

  • Halter WE, Pettke T, Heinrich CA. The origin of Cu/Au ratios in porphyrytype ore deposits. Science. 2002 Jun 7;296(5574):1844-6.
  • Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nature Geoscience. 2015 Mar 1;8(3):216-9.
  • Richards JP. The oxidation state, and sulfur and Cu contents of arc
  • magmas: implications for metallogeny. Lithos. 2015 Sep 15;233:27-45.

Volcanic eruptions

Magma rheology and eruption style

  • Cashman, K and J Blundy, 2000. Degassing and crystallization of ascending andesite and dacite. Phil. Trans. R. Soc. Lond. A 358, 1487-1513.

Lava domes

  • Melnik and Sparks, 1999. Nonlinear dynamics of lava dome extrusion. Nature 402, 37-41.
  • Sparks, R. S. J., 1997. Causes and consequences of pressurisation in lava dome eruptions, Earth Plan Sci Lett 50, 3-4, 177–189.

Fragmentation

  • Dingwell, D., 1996. Volcanic Dilemma--Flow or Blow? Science 273, 1054, DOI: 10.1126/science. 273.5278.1054.
  • Papale, P., 1999. Strain-induced fragmentation in volcanic eruptions. Nature 397, 425-428.
  • Rust, AC and KV Cashman, 2011. Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res, 116, B11202, 17 PP., 2011 doi:10.1029/2011JB008494.

Ed Tipper - Lectures 15-19, Isotope Geochemistry

Lecture 15

  • Allegre, C. J. et al., 1984. Earth and Planet. Sci. Lett., 67, 1 19–34.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • DePaolo, D. J. et al., 1976. Geophysical Research Letters, 3, 12 743–746. doi: 10.1029/GL003i012p00743.
  • Dhuime, B. et al., 2017. Sedimentary Geology, 357 16–32. doi: https://doi.org/10.1016/j.sedgeo.2017.06.001.
  • Goldstein, S. J. et al., 1988. Earth and Planetary Science Letters, 87, 3 249–265.
  • Hawkesworth, C. J. et al., 2006. Nature, 443, 7113 811–817. doi: 0.1038/nature05191.
  • Kemp, A. I. S. et al., 2006. Nature, 439, 7076 580–583.
  • Schoene, B. et al., 2014. 4.10 - U–Th–Pb Geochronology, pp. 341–378. Elsevier, Oxford. doi: http://dx.doi.org/10.1016/B978-0-08-095975-7.00310-7.

Lecture 16

  • Burkhardt, C. et al., 2016. Nature, 537 394 EP –.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • Caro, G. et al., 2003. Nature, 423, 6938 428–432.
  • Harrison, T. M., 2009. Annual Review of Earth and Planetary Sciences, 37, 1 479–505. doi: 10.1146/annurev.earth.031208.100151.
  • Kleine, T. et al., 2002. Nature, 418, 6901 952–955.
  • Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
  • Touboul, M. et al., 2007. Nature, 450, 7173 1206–1209.

Lecture 17

  • Herwartz, D. et al., 2014. Science, 344, 6188 1146–1150. doi: 10.1126/science.1251117.
  • Schauble, E. A., 2004. Rev. Min. Geochem., 55 65–112.
  • Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
  • Taylor, H. P. et al., 1962. Geological Society of America Bulletin, 73, 4 461–480. doi: 10.1130/0016- 7606(1962)73[461:RBORIC]2.0.CO;2.
  • Valley, J. W. et al., 2005. Contrib. to Min. Pet., 150, 6 561–580.
  • Young, E. D. et al., 2009. Earth and Planetary Science Letters, 288, 3-4 524–533.
  • Young, E. D. et al., 2016. Science, 351, 6272 493–496. doi: 10.1126/science.aad0525.

Lecture 18

  • Armytage, R. M. G. . et al., 2011. GEOCHIMICA ET COSMOCHIMICA ACTA, 75, 13 3662–3676. doi: 10.1016/j.gca.2011.03.044.
  • Badro, J. et al., 2015. Proceedings of the National Academy of Sciences, 112, 40 12310–12314. doi: 10.1073/pnas.1505672112.
  • Bourdon, B. et al., 2010. Geochim. Cosmochim. Act., 74, 17 5069–5083.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • Fitoussi, C. et al., 2009. Earth and Planet. Sci. Lett. Georg, R. B. et al., 2007. Nature, 447, 7148 1102–1106.
  • Savage, P. S. et al., 2014. Lithos, 190–191 500–519. doi: http://dx.doi.org/10.1016/j.lithos.2014.01.003.
  • Sedaghatpour, F. et al., 2013. Geochimica et Cosmochimica Acta, 120 1–16. doi: http://dx.doi.org/10.1016/j.gca.2013.06.026.
  • Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
  • Shahar, A. et al., 2011. Geochim. Cosmochim. Act., 75, 23 7688–7697. doi: 10.1016/j.gca.2011.09.038.
  • Stracke, A. et al., 2018. Geochimica et Cosmochimica Acta, 226 192–205. doi: https://doi.org/10.1016/j.gca.2018.02.002
  • Wiechert, U. et al., 2006. Earth and Planet. Sci. Lett., 256, 3-4 360–371. doi: 10.1016/j.epsl.2007.01.007
  • Young, E. D. et al., 2015. Chemical Geology, 395, 0 176–195. doi: http://dx.doi.org/10.1016/j.chemgeo.2014.12.013.

Lecture 19

  • Farley, K. A. et al., 1998. Annual Review of Earth and Planetary Sciences, 26, 1 189–218. doi: 10.1146/annurev.earth.26.1.189.
  • Javoy, M. et al., 1991. Earth and Planetary Science Letters, 107, 3–4 598–611. doi: http://dx.doi.org/10.1016/0012-821X(91)90104-P.
  • Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
  • Moreira, M., 2013. Geochemical Perspectives, 2, 2 229–230. Mukhopadhyay, S., 2012. Nature, 486, 7401 101–104. Parman, S. W. et al., 2005. Nature, 437, 7062 1140–1143.

John Mclennan - Lectures 20-24, Mantle Variability and Melting

Key References

Integration of melt production in corner flow:

Mantle composition, mineralogy, melting behaviour:

Thermodynamics of melting – following the adiabat

References in additional to previous lecture

Part II - Core 4 Climate

This is the previous reading list & will be updated as soon as possible

Part II Reading List - Core 4: Climate

Reading List for C4 by Subject - Lectures 1-6 by David Hodell


Deep Sea Sediments

General references:

Lisitzin, A. P. (1996), Oceanic Sedimentation: Lithology and Geochemistry, 400 pp., AGU, Washington, D. C., there is no copy of this in the library, available on line only doi:10.1029/SP044.

Kennett, J.P. (1982). Marine Geology, Chapters 13-16, pp. 396-573, Prentice Hall - in the short loan collection in the library office


Specific papers:

Anderson, D. M., Attenuation of millennial-scale events by bioturbation in marine sediments (2001), Paleoceanography, 16 (4), 352-357.

Francois, R., M. Frank, M. M. Rutgers van der Loeff, and M. P. Bacon (2004), 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary, Paleoceanography, 19, PA1018, doi:10.1029/2003PA000939.

Henderson, G.M., and Anderson, R.F., The U-series Toolbox for Paleoceanography (2003), Reviews in Mineralogy and Geochemistry January 52 ( 1), 493-531.

Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O., and Banta, G.T., 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences Inter-Research - Marine Ecology Progress Series 446 p285-302 

McCave, I.N., (2002), A poisoned chalice? Science 298, 1186-1187.

Teal, L.R., Bulling, M.T., Parker, E.R. and Solan, M., (2008), Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology, 2, 207–218.

 

Methods of temperature and ice volume reconstruction in marine sediments

Foraminifera

Oritz, J. and Mix, A. (1997). Comparison of Imbrie-Kipp transfer function and modern analog temperature estimates using sediment trap and core top foraminiferal faunas. Paleoceanography 12(2): 175-190.

Oxygen isotopes

Pearson, P.N., (2012). Oxygen isotopes in foraminifera: overview and historical review. In: Reconstruction Earth’s Deep-Time Climate – The State of the Art 2012, The Paleontological Society Papers, 18: 1-38.

Rohling, E.J. (2006) Oxygen isotope composition of seawater. In, Elias, S.A. (ed.) Encyclopedia of Quaternary Science (Vol. 3)., Elsevier, 1748-1756.

Mg/Ca

Lea, D.W. (2003) Elemental and Isotopic Proxies of Marine Temperatures, (this link is to the 2014 edition) pp. 365-390. In The Oceans and Marine Geochemistry (ed. H. Elderfield, ed.) Vol. 6 Treatise on Geochemistry (eds H.D. Holland and K.K. Tuerekian), Elsevier-Pergamon, Oxford.

Rosenthal, Y., B.K. Linsley, Mg/Ca and Sr/Ca Paleothermometery from Calcareous Marine Fossils, chapter in the Encyclopedia of Quaternary Sciences, Elsevier Ltd., 2006.

Clumped isotopes

Eiler, J.M., 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30: 3575–3588.

Alkenones

Herbert, T.D., 2003. Alkenone paleotemperature determinations. In: Treatise on Geochemistry, 6 (December 2003) , p. 391-432.

Tex-86

Schouten, S., Hopmans, E.C., Schefus, E., and Sinninghe Damste, 2002, Distributional variation in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?: Earth and Planetary Science Letters, 204: 265-274.

 

Milankovitch Theory of the Ice Ages

General reading:
Imbrie, J. and Imbrie, K.P., 1979. Ice Ages: Solving the Mystery. Harvard University Press, ISBN: 0-674-44075-7

Review paper:
Berger, A., Milankovitch theory and climate, Reviews in Geophysics, 26, 624-657, 1988.

Hodell, D.A., 2016. The smoking gun of the Ice Ages, Science 354 (6317), 1235-1236.

Classic papers:

Hays, J.D., Imbrie, J., and Shackleton, N.J., 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages, Science, 194,  1121-1132.

Imbrie, J., and J. Z. Imbrie, 1980. Modeling the climatic response to orbital variations, Science, 207, 943–953.

Paillard, D. (2001), Glacial cycles: Toward a new paradigm, Rev. Geophys., 39, 325 –346.

For an alternative view:

Wunsch, C., 2004, Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change Quaternary Science Reviews 23, 1001–1012.


Middle Pleistocene Transition

Chalk, T.B., Hain, M.P., Foster, G.L., Rohling, E.J., Sexton, P.F., Badger, M.P.S., cherry, S.G., Hasenfratz, A.P., Haug, G.H., Jaccard, S.L., Martinez-Garcia, M., Palike, H., Pancost, R.D., and Wilson, P.A., Causes of ice age intensification across the Mid-Pleistocene Transition, PNAS 2017 December, 114 (50) 13114-13119. https://doi.org/10.1073/pnas.1702143114

Clark, P. U., D. Archer, D. Pollard, J. D. Blum, J. A. Rial, V. Brovkin, A. C Mix, N. G. Pisias, and M. Roy (2006), The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric CO2, Quat. Sci. Rev, 25, 3150-3184.

Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D.A., and Piotrowski, A.M., 2012. Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science 337, 704-709.

Huybers, 2006, Early Pleistocene glacial cycles and the integrated summer insolation forcing, Science, 313,  pp. 508-511.

Raymo, M.E. and K.H. Nisancioglu, 2003, The 41 Kyr world: Milankovitch’s other unsolved mystery, Paleoceanography, v. 18, 10.1029/2002PA000791.

Raymo, M. E. and P. Huybers, 2008, Unlocking the mysteries of the Ice Ages, Nature, v. 451, p. 284-285.

Raymo, M. E., L. Lisiecki, and K. Nisancioglu, 2006, Plio-Pleistocene ice volume, Antarctic climate, and the global ?18O record, Science, v. 313, p. 492, doi: 10.1126/science.1123296.


Cyclostratigraphy

Bailey, R.J., 2009. Cyclostratigraphic reasoning and orbital time calibration Terra Nova, 21, 340–351.

Hilgen, F.J., 1991. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters, 104: 226-244.

Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilsonk, D.S., 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature  400: 625-655.

Tuenter, E., Weber, S.L., Hilgen, F.J., Lourens, L.J., 2003. The response of the African summer monsoon to remote and local forcing due to precession and obliquity Global and Planetary Change 36: 219–235.

Weedon, G.P., 2003. Chapter 1 in Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles, Cambridge University Press, 259 pp.

Deepwater circulation Proxies

Carbon isotopes:

Schmittner, A., et al. (2017), Calibration of the carbon isotope composition (δ13C) of benthic foraminifera, Paleoceanography, 32, 512–530, doi:10.1002/2016PA003072.

Curry, W. B., and D. W. Oppo (2005), Glacial water mass geometry and the distribution of δ13C of CO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021

Radiocarbon:

Freeman, E. and Skinner, L. C. and Waelbroeck, C. and Hodell, D., 2016. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum. Nature Communications, 7:11998 DOI: 10.1038/ncomms11998

Skinner, L. C. and Primeau, F. and Freeman, E. and de la Fuente, M. and Goodwin, P. A. and Gottschalk, Julia and Huang, E. and McCave, I. N. and Noble, T. L. and Scrivner, A. E. (2017) Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nature Communications, 8. p. 16010. ISSN 2041-1723 DOI 10.1038/ncomms16010

Sortable silt:

McCave, I.N., Thornalley, D.J.R., and Hall, I.R., 2017. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the “Mud Current Meter”, Deep-Sea Research Part I, 127: 1-12.

McCave, I. N., and I. R. Hall (2006), Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophys. Geosyst., 7, Q10N05, doi:10.1029/2006GC001284.

231Pa/230Th:

J.F McManus, R Francois, JM Gherardi, LD Keigwin, S Brown-Leger, 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature 428 (6985), 834.

Jörg Lippold, Jens Grützner, Diane Winter, Yann Lahaye, Augusto Mangini, Marcus Christl,2009, Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation? , Geophysical Research Letters, 36, L12601, doi:10.1029/2009GL038068

Lippold, J et al. (2012): Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nature Geoscience, 5, 813-816

Nd isotopes:

Roberts, N.L., Piotrowski, A.M., McManus, J., Keigwin, L., (2010) Synchronous deglacial overturning and water mass source changes, Science, 327 (5961). pp. 75-78.

Howe J.N.W., Piotrowski, A.M., Mulitza, S., Noble T.L., Chiessi C.M., Bayon, G., (2016) North Atlantic Deep Water Production during the Last Glacial Maximum, Nature Communications 7, 11765.

 

Part II - Core 5 Mineralogy

Introduction to Rock and Paleomagnetism

Lectures 1-6 - Rich Harrison and James Bryson

Essential text books:

Essentials of Paleomagnetism - Lisa Tauxe (in the library and also all available on-line, https://earthref.org/MagIC/books/Tauxe/Essentials/)
Magnetism in Condensed Matter - Stephen Blundell (in the library)

Background Reading

  • Harrison, R. J., and J. M. Feinberg. “Mineral Magnetism: Providing New Insights into Geoscience Processes.” Elements 5, no. 4 (August 1, 2009): 209–15. https://doi.org/10.2113/gselements.5.4.209.
  • Maher, B. A. “Rain and Dust: Magnetic Records of Climate and Pollution.” Elements 5, no. 4 (August 1, 2009): 229–34. https://doi.org/10.2113/gselements.5.4.229.
  • McEnroe, S. A., K. Fabian, P. Robinson, C. Gaina, and L. L. Brown. “Crustal Magnetism, Lamellar Magnetism and Rocks That Remember.” Elements 5, no. 4 (August 1, 2009): 241–46. https://doi.org/10.2113/gselements.5.4.241.
  • Posfai, M., and R. E. Dunin-Borkowski. “Magnetic Nanocrystals in Organisms.” Elements 5, no. 4 (August 1, 2009): 235–40. https://doi.org/10.2113/gselements.5.4.235.
  • Roberts, Andrew P., Trevor P. Almeida, Nathan S. Church, Richard J. Harrison, David Heslop, Yiliang Li, Jinhua Li, Adrian R. Muxworthy, Wyn Williams, and Xiang Zhao. “Resolving the Origin of Pseudo-Single Domain Magnetic Behavior: Origin of PSD Behavior.” Journal of Geophysical Research: Solid Earth 122, no. 12 (December 2017): 9534–58. https://doi.org/10.1002/2017JB014860.
  • Rochette, P., B. P. Weiss, and J. Gattacceca. “Magnetism of Extraterrestrial Materials.” Elements 5, no. 4 (August 1, 2009): 223–28. https://doi.org/10.2113/gselements.5.4.223.
  • Tarduno, J. A. “Geodynamo History Preserved in Single Silicate Crystals: Origins and Long-Term Mantle Control.” Elements 5, no. 4 (August 1, 2009): 217–22. https://doi.org/10.2113/gselements.5.4.217.


Papers for lectures and research seminar:

Lectures 7-12 - Simon Redfern

  • Archer, T. D., S. E. A. Birse, M. T. Dove, S. A. T. Redfern, J. D. Gale, and R. T. Cygan. “An Interatomic Potential Model for Carbonates Allowing for Polarization Effects.” Physics and Chemistry of Minerals 30, no. 7 (August 1, 2003): 416–24. https://doi.org/10.1007/s00269-002-0269-z.
  • Dove, Martin T. “On the Computer Modelling of Diopside: Toward a Transferable Potential for Silicate Minerals.” American Mineralogist 74 (1989): 774–79.
  • Dove, Martin T., Tracey Cool, David C. Palmer, Andrew Putnis, Ekhard K. H. Salje, and Bjorn Winkler. “On the Role of Al-Si Ordering in the Cubic-Tetragonal Phase Transition of Leucite.” American Mineralogist 78 (1993): 486–92.
  • Dove, Martin T., Bjorn Winkler, Maurice Leslie, Mark J. Harris, and Ekhard K. H. Salje. “A New Interatomic Potential Model for Calcite: Applications to Latticedynamics Studies, Phase Transition, and Isotope Fractionation.” American Mineralogist 77 (1992): 244–50.
  • Feng, Xiaolei, Siyu Lu, Chris J. Pickard, Hanyu Liu, Simon A. T. Redfern, and Yanming Ma. “Carbon Network Evolution from Dimers to Sheets in Superconducting Ytrrium Dicarbide under Pressure.” Communications Chemistry 1, no. 1 (December 2018). https://doi.org/10.1038/s42004-018-0085-0.
  • Feng, Xiaolei, and Simon A.T. Redfern. “Iodate in Calcite, Aragonite and Vaterite CaCO3: Insights from First-Principles Calculations and Implications for the I/Ca Geochemical Proxy.” Geochimica et Cosmochimica Acta 236 (September 2018): 351–60. https://doi.org/10.1016/j.gca.2018.02.017.
  • Li, Yinwei, Xiaolei Feng, Hanyu Liu, Jian Hao, Simon A. T. Redfern, Weiwei Lei, Dan Liu, and Yanming Ma. “Route to High-Energy Density Polymeric Nitrogen t-N via He−N Compounds.” Nature Communications 9, no. 1 (December 2018). https://doi.org/10.1038/s41467-018-03200-4.
  • Palin, Erika J., Martin T. Dove, Simon A. T. Redfern, Joaquín Ortega-Castro, Claro Ignacio Sainz-Díaz, and Alfonso Hernández-Laguna. “Computer Simulations of Cations Order-Disorder in 2:1 Dioctahedral Phyllosilicates Using Cation-Exchange Potentials and Monte Carlo Methods.” International Journal of Quantum Chemistry 114, no. 19 (October 5, 2014): 1257–86. https://doi.org/10.1002/qua.24703.
  • Stavrou, Elissaios, Yansun Yao, Alexander F. Goncharov, Sergey S. Lobanov, Joseph M. Zaug, Hanyu Liu, Eran Greenberg, and Vitali B. Prakapenka. “Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth’s Core Thermodynamic Conditions.” Physical Review Letters 120, no. 9 (February 28, 2018). https://doi.org/10.1103/PhysRevLett.120.096001.
  • Walker, Andrew M., Richard P. Tyer, Richard P. Bruin, and Martin T. Dove. “The Compressibility and High Pressure Structure of Diopside from First Principles Simulation.” Physics and Chemistry of Minerals 35, no. 7 (August 2008): 359–66. https://doi.org/10.1007/s00269-008-0229-3.
  • Winkler, Bjorn, and Martin T. Dove. “Static Lattice Energy Minimisation and Lattice Dynamics Calculations on Aluminosilicate Minerals.” American Mineralogist 76 (1991): 313–31.
  • Zhu, Li, Hanyu Liu, Chris J. Pickard, Guangtian Zou, and Yanming Ma. “Reactions of Xenon with Iron and Nickel Are Predicted in the Earth’s Inner Core.” Nature Chemistry 6, no. 7 (July 2014): 644–48. https://doi.org/10.1038/nchem.1925.

Option 1 - Continental Tectonics

This is the 2018-19 reading list for James Jackson's course on Continental Tectonics and Mountain Building.

Option 1 - Continental Tectonics and Mountain Building

Professor James Jackson


Lecture 1:



Lecture 2:

 

Lecture 3:
  • Jackson et al, 1982, Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981, Earth and Planetary Science Letters, 57, p. 377-397.
  • Jackson, 1987, Active normal faulting and crustal extension, Geological Society Special Publication No. 28, p. 3-17.
  • Jackson and White, 1988, Normal faulting in the upper continental crust: observations from regions of active extension, Journal of Structural Geology, 11, p. 15-36.
  • Proffett 1977, Cenozoic geology of the Yerington district, Nevada, and implications for the nature and origin of Basin and Range faulting, Geological Society of America Bulletin, v. 88, p. 247-266.
  • Foster and Nimmo, 1996, Comparisons between the rift systems of East Africa, Earth, and Beta Regio, Venus, Earth and Planetary Science Letters, 143, p. 183-195. 
  • Copley and Woodcock, 2016, Estimates of fault strength from the Variscan foreland of the northern UK, Earth and Planetary Science Letters, 451, p. 108-113.
  • Jackson and Blenkinsop, 1997, the Bilila-Mtakataka fault in Malawi: and active, 100-km long, normal fault segment in thick seismogenic crust, Tectonics, 16, p. 137-150.
  • Goldsworthy and Jackson, 2001, Migration of activity within normal fault systems: examples from the Quaternary of mainland Greece, Journal of Structural Geology, 23, p. 489-506.
  • Copley et al., 2018, Unexpected earthquake hazard revealed by Holocene rupture on the Kenchriae Fault (central Greece): implications for weak sub-fault shear zones. Earth Planet. Sci. Letts., 486, 141–154.

Lecture 4:

Nissen et al., 2011, New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran, Geophysical Journal International, 186, p. 928-944.

Talebian & Jackson, 2003, A reappraisal of earthquake focal mechanisms and active shortening in the Zagros Mountains of Iran, Geophysical Journal International, 156, p. 506-526.

Copley & Jackson, 2006 Active Tectonics of the Turkish-Iranian Plateau, Tectonics, 25, doi:10.1029/2005TC001906.

Molnar & Gipson, 1994, Very long baseline interferometry and active rotations of crustal blocks in the Western Transverse Ranges, California, Bulletin of the Gological Society of America, 106, p. 594-606.

Bayasgalan et al., 1999, Field examples of strike-slip fault terminations in Mongolia and their tectonic significance, Tectonics, 18, p. 394-411.

Copley, 2014, Postseismic afterslip 30 years after the 1978 Tabas-e-Golshan (Iran) earthquake: observations and implications for the geological evolution of thrust belts, Geophysical Journal International, doi: 10.1093/gji/ggu023.


Lecture 5:

  • Mckenzie, 1972, Active Tectonics of the Mediterranean Region, Geophysical Journal of the Royal Astronomical Society, 30, p. 109-185.
  • England and Jackson, Active deformation of the continents, Ann. Revs. Earth. Planet. Sci., 17, 197-226, 1989.
  • Meade, Present-day kinematics of the India-Asia collision zone, Geology, 35, 81-84, 2007.
  • England and Molnar, Active deformation of Asia: from kinematics to dynamics, Science, 278, 647-650, 1997.
  • Bendick et al, Geodetic evidence for a low slip rate in the Altyn Tagh fault system, Nature, 404, 69-72, 2001


Lecture 6:

  • Priestley & McKenzie, 2006, The thermal structure of the lithosphere from shear wave velocities, Earth and Planetary Science Letters, 244, p. 285-301.
  • McKenzie & Priestley, 2008, The influence of lithospheric thickness variations on continental evolution, Lithos, 102, p. 1-11.
  • Copley et al., 2014, Active faulting in apparently stable peninsular India: rift inversion and a Holocene-age great earthquake on the Tapti Fault, Journal of Geophysical Research, doi:10.1002/2014JB011294.
  • Jackson et al., 2008, New views on the structure and rheology of the lithosphere, Journal of the Geological Society, 165, p. 453-465.
  • McKenzie & Priestley, 2016, Speculations on the formation of cratons and cratonic basins, Earth and Planetary Science Letters, 435, p. 94-104.
  • McKenzie & Rodriguez Tribaldos, 2018, Lithospheric heating by crustal thickening: a possible origin of the Parnaiba Basin. Spec. Publ. Geol. Soc. London, 472, https://doi.org/10.1144/SP472.7


Lecture 7:

  • England and Jackson, Active deformation of the continents, Ann. Revs. Earth. Planet. Sci., 17, 197-226, 1989.
  • McKenzie et al, Characteristics and consequences of flow in the lower crust, J. Geophys. Res., 105, 11,029-11,046, 2000.
  • England and Houseman, Mechanics of the Tibetan Plateau, Phil. Trans. R. Soc. Lond. A., v 326, p. 301-320, 1988.
  • England and Molnar, Active deformation of Asia: from kinematics to dynamics, Science, 278, 647-650, 1997.
  • Houseman et al, Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts, J. Geophys. Res., 86, p. 6115-6132, 1981.


Lecture 8:

  • Craig et al, Thermal and tectonic consequences of India underthrusting Tibet, EPSL, 353-354, p.231-239, 2012.
  • Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid. Mech., 121, 43-58, 1982.
  • McKenzie et al, Characteristics and consequences of flow in the lower crust, J. Geophys. Res., 105, 11,029-11,046, 2000.
  • Copley, The formation of mountain range curvature by gravitational spreading, EPSL, 351-352, p.208-214, 2012.
  • Copley and McKenzie, Models of crustal flow in the India-Asia collision zone, Geophys. J. Int. , 169, 683-698, 2007.
  • Copley et al, Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet, Nature, 472, p.79-81, doi:10.1038/nature09926, 2011.


Option 2 - Lithospheric Dynamics

This is the summary reading list for Option 2, taught by Nicky White. Please refer to each set of lecture notes for more focused reading suggestions.

Option 2 - Probing Lithospheric Dynamics through Space and Time (Nicky White)

Lecture 1 - advanced stretching

  • Barton, Penny, and Rosy Wood. 2008. 'Tectonic Evolution of the North Sea Basin: Crustal Stretching and Subsidence'. Geophysical Journal of the Royal Astronomical Society 79 (3): 987–1022. https://doi.org/10.1111/j.1365-246X.1984.tb02880.x.
  • Bellingham, P, and N White. 2000. 'A General Inverse Method for Modelling Extensional Sedimentary Basins'. Basin Research, 8.
  • Le Pichon, Xavier, and Jean-Claude Sibuet. 1981. 'Passive Margins: A Model of Formation'. Journal of Geophysical Research 86 (B5): 3708. https://doi.org/10.1029/JB086iB05p03708.
  • McKenzie, D. 1978. 'Some Remarks on the Development of Sedimentary Basins'. Earth and Planetary Science Letters 40 (1): 25–32. https://doi.org/10.1016/0012-821X(78)90071-7.
  • White, Nicky, Mark Thompson, and Tony Barwise. 2003. 'Understanding the Thermal Evolution of Deep-Water Continental Margins'. Nature 426 (6964): 334–43. https://doi.org/10.1038/nature02133.

 

Lecture 2 - uplift and denudation

 

Lecture 3 - carbon sequestration

  • Bickle, Mike, Andy Chadwick, Herbert E. Huppert, Mark Hallworth, and Sarah Lyle. 2007. 'Modelling Carbon Dioxide Accumulation at Sleipner: Implications for Underground Carbon Storage'. Earth and Planetary Science Letters 255 (1–2): 164–76. https://doi.org/10.1016/j.epsl.2006.12.013.
  • Boait, F. C., N. J. White, M. J. Bickle, R. A. Chadwick, J. A. Neufeld, and H. E. Huppert. 2012. 'Spatial and Temporal Evolution of Injected CO 2 at the Sleipner Field, North Sea'. Journal of Geophysical Research: Solid Earth 117 (B3). https://doi.org/10.1029/2011JB008603.
  • Cowton, L. R., J. A. Neufeld, N. J. White, M. J. Bickle, J. C. White, and R. A. Chadwick. 2016. 'An Inverse Method for Estimating Thickness and Volume with Time of a Thin CO 2 -Filled Layer at the Sleipner Field, North Sea: ESTIMATING CO 2 -LAYER THICKNESS'. Journal of Geophysical Research: Solid Earth 121 (7): 5068–85. https://doi.org/10.1002/2016JB012895.
  • Huppert, Herbert E., and Jerome A. Neufeld. 2014. 'The Fluid Mechanics of Carbon Dioxide Sequestration'. Annual Review of Fluid Mechanics 46 (1): 255–72. https://doi.org/10.1146/annurev-fluid-011212-140627.

 

Lecture 4 - seismic oceanography

  • Gunn, K. L., N. J. White, R. D. Larter, and C. P. Caulfield. 2018. 'Calibrated Seismic Imaging of Eddy-Dominated Warm-Water Transport Across the Bellingshausen Sea, Southern Ocean'. Journal of Geophysical Research: Oceans 123 (4): 3072–99. https://doi.org/10.1029/2018JC013833.
  • Holbrook, W. S. 2003. 'Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling'. Science 301 (5634): 821–24. https://doi.org/10.1126/science.1085116.
  • Papenberg, C., D. Klaeschen, G. Krahmann, and R. W. Hobbs. 2010. 'Ocean Temperature and Salinity Inverted from Combined Hydrographic and Seismic Data'. Geophysical Research Letters 37 (4). https://doi.org/10.1029/2009GL042115.
  • Sheen, K. L., N. J. White, C. P. Caulfield, and R. W. Hobbs. 2012. 'Seismic Imaging of a Large Horizontal Vortex at Abyssal Depths beneath the Sub-Antarctic Front'. Nature Geoscience 5 (8): 542–46. https://doi.org/10.1038/ngeo1502.
  • Sheen, K. L., N. J. White, and R. W. Hobbs. 2009. 'Estimating Mixing Rates from Seismic Images of Oceanic Structure'. Geophysical Research Letters 36 (24). https://doi.org/10.1029/2009GL040106.
  • Yilmaz, Öz. 2001. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801580.

 

Lecture 5 - dynamic topography 1

  • Al-Hajri, Yasir, Nicky White, and Stewart Fishwick. 2009. 'Scales of Transient Convective Support beneath Africa'. Geology 37 (10): 883–86. https://doi.org/10.1130/G25703A.1.
  • Czarnota, K., M. J. Hoggard, N. White, and J. Winterbourne. 2013. 'Spatial and Temporal Patterns of Cenozoic Dynamic Topography around Australia: DYNAMIC TOPOGRAPHY AROUND AUSTRALIA'. Geochemistry, Geophysics, Geosystems 14 (3): 634–58. https://doi.org/10.1029/2012GC004392.
  • Hoggard, M. J., N. White, and D. Al-Attar. 2016. 'Global Dynamic Topography Observations Reveal Limited Influence of Large-Scale Mantle Flow'. Nature Geoscience 9 (6): 456–63. https://doi.org/10.1038/ngeo2709.
  • Menard, H. W. 1973. 'Depth Anomalies and the Bobbing Motion of Drifting Islands'. Journal of Geophysical Research 78 (23): 5128–37. https://doi.org/10.1029/JB078i023p05128.
  • Winterbourne, Jeffrey, Alistair Crosby, and Nicky White. 2009. 'Depth, Age and Dynamic Topography of Oceanic Lithosphere beneath Heavily Sedimented Atlantic Margins'. Earth and Planetary Science Letters 287 (1–2): 137–51. https://doi.org/10.1016/j.epsl.2009.08.019.

 

Lecture 6 - dynamic topography 2 (models)

  • Braun, Jean. 2010. 'The Many Surface Expressions of Mantle Dynamics'. Nature Geoscience 3 (November): 825.
  • Flament, Nicolas, Michael Gurnis, and R. Dietmar Müller. 2013. 'A Review of Observations and Models of Dynamic Topography'. Lithosphere 5 (2): 189–210. https://doi.org/10.1130/L245.1.
  • Hager, B. H., and M. A. Richards. 1989. 'Long-Wavelength Variations in Earth's Geoid: Physical Models and Dynamical Implications'. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 328 (1599): 309–27. https://doi.org/10.1098/rsta.1989.0038.
  • Hager, Bradford H., Robert W. Clayton, Mark A. Richards, Robert P. Comer, and Adam M. Dziewonski. 1985. 'Lower Mantle Heterogeneity, Dynamic Topography and the Geoid'. Nature 313 (6003): 541–45. https://doi.org/10.1038/313541a0.

 

Lecture 7 - modern and ancient landscapes

  • Hartley, Ross A., Gareth G. Roberts, Nicky White, and Chris Richardson. 2011. 'Transient Convective Uplift of an Ancient Buried Landscape'. Nature Geoscience 4 (8): 562–65. https://doi.org/10.1038/ngeo1191.
  • Howard, Alan D., William E. Dietrich, and Michele A. Seidl. 1994. 'Modeling Fluvial Erosion on Regional to Continental Scales'. Journal of Geophysical Research: Solid Earth 99 (B7): 13971–86. https://doi.org/10.1029/94JB00744.
  • Paul, Jonathan D., Gareth G. Roberts, and Nicky White. 2014. 'The African Landscape through Space and Time'. Tectonics 33 (6): 898–935. https://doi.org/10.1002/2013TC003479.
  • Roberts, Gareth G., and Nicky White. 2010. 'Estimating Uplift Rate Histories from River Profiles Using African Examples'. Journal of Geophysical Research: Solid Earth 115 (B2). https://doi.org/10.1029/2009JB006692.
  • Rudge, John F., Gareth G. Roberts, Nicky J. White, and Christopher N. Richardson. 2015. 'Uplift Histories of Africa and Australia from Linear Inverse Modeling of Drainage Inventories'. Journal of Geophysical Research: Earth Surface 120 (5): 894–914. https://doi.org/10.1002/2014JF003297.

 

Lecture 8 - surface manifestations of mantle convection

  • Jones, Stephen M., Nicky White, and John Maclennan. 2002. 'V-Shaped Ridges around Iceland: Implications for Spatial and Temporal Patterns of Mantle Convection'. Geochemistry, Geophysics, Geosystems 3 (10): 1–23. https://doi.org/10.1029/2002GC000361.
  • Parnell-Turner, R. E., N. J. White, J. Maclennan, T. J. Henstock, B. J. Murton, and S. M. Jones. 2013. 'Crustal Manifestations of a Hot Transient Pulse at 60°N beneath the Mid-Atlantic Ridge'. Earth and Planetary Science Letters 363 (February): 109–20. https://doi.org/10.1016/j.epsl.2012.12.030.
  • Parnell-Turner, Ross, Nicky White, Tim Henstock, Bramley Murton, John Maclennan, and Stephen M. Jones. 2014. 'A Continuous 55-Million-Year Record of Transient Mantle Plume Activity beneath Iceland'. Nature Geoscience 7 (November): 914.
  • Poore, Heather, Nicky White, and John Maclennan. 2011. 'Ocean Circulation and Mantle Melting Controlled by Radial Flow of Hot Pulses in the Iceland Plume'. Nature Geoscience 4 (8): 558–61. https://doi.org/10.1038/ngeo1161.
  • Vogt, P.R. 1971. 'Asthenosphere Motion Recorded by the Ocean Floor South of Iceland'. Earth and Planetary Science Letters 13 (1): 153–60. https://doi.org/10.1016/0012-821X(71)90118-X.

Option 3 - Deep Earth Structure

Reading List - Option 3 (2019)

Please note that if references are marked with an asterisk (*) , they have been highlighted by your lecturers as being particularly useful to you.

Structure and Dynamics of the Deep Earth - Sanne Cottaar and David Al-Attar

Lectures 1-4: Global Seismology (Sanne Cottaar)

Lecture 1

  • Zhu, Hejun, Ebru Bozdağ, Daniel Peter, and Jeroen Tromp. “Structure of the European Upper Mantle Revealed by Adjoint Tomography.” Nature Geoscience 5, no. 7 (July 2012): 493–98. https://doi.org/10.1038/ngeo1501.

 

Lecture 2

  • Cottaar, Sanne, and Arwen Deuss. “Large-Scale Mantle Discontinuity Topography beneath Europe: Signature of Akimotoite in Subducting Slabs: MANTLE DISCONTINUITIES BENEATH EUROPE.” Journal of Geophysical Research: Solid Earth 121, no. 1 (January 2016): 279–92. https://doi.org/10.1002/2015JB012452.
  • Hurst, M. D., S. M. Mudd, M. Attal, and G. Hilley. “Hillslopes Record the Growth and Decay of Landscapes.” Science 341, no. 6148 (August 23, 2013): 868–71. https://doi.org/10.1126/science.1241791.
  • Kind, R., and X. Li. “Deep Earth Structure - Transition Zone and Mantle Discontinuities.” In Treatise on Geophysics, 655–82. Elsevier, 2015. https://doi.org/10.1016/B978-0-444-53802-4.00017-8.
  • Long, Maureen D., and Thorsten W. Becker. “Mantle Dynamics and Seismic Anisotropy.” Earth and Planetary Science Letters 297, no. 3–4 (September 2010): 341–54. https://doi.org/10.1016/j.epsl.2010.06.036.
  • Romanowicz, B.A., and B.J. Mitchell. “Deep Earth Structure: Q of the Earth from Crust to Core.” In Treatise on Geophysics, 789–827. Elsevier, 2015. https://doi.org/10.1016/B978-0-444-53802-4.00021-X.
  • Zhu, Hejun, Ebru Bozdağ, Thomas S. Duffy, and Jeroen Tromp. “Seismic Attenuation beneath Europe and the North Atlantic: Implications for Water in the Mantle.” Earth and Planetary Science Letters 381 (November 2013): 1–11. https://doi.org/10.1016/j.epsl.2013.08.030.

 

Lecture 3

  • French, Scott W., and Barbara Romanowicz. “Broad Plumes Rooted at the Base of the Earth’s Mantle beneath Major Hotspots.” Nature 525, no. 7567 (September 2015): 95–99. https://doi.org/10.1038/nature14876.
  • Fukao, Yoshio, and Masayuki Obayashi. “Subducted Slabs Stagnant above, Penetrating through, and Trapped below the 660 Km Discontinuity: SUBDUCTED SLABS IN THE TRANSITION ZONE.” Journal of Geophysical Research: Solid Earth 118, no. 11 (November 2013): 5920–38. https://doi.org/10.1002/2013JB010466.
  • Garnero, Edward J., Allen K. McNamara, and Sang-Heon Shim. “Continent-Sized Anomalous Zones with Low Seismic Velocity at the Base of Earth’s Mantle.” Nature Geoscience 9, no. 7 (July 2016): 481–89. https://doi.org/10.1038/ngeo2733.
  • Lay, T. “Deep Earth Structure: Lower Mantle and D″.” In Treatise on Geophysics, 683–723. Elsevier, 2015. https://doi.org/10.1016/B978-0-444-53802-4.00019-1.
  • Yu, Shule, and Edward J. Garnero. “Ultralow Velocity Zone Locations: A Global Assessment.” Geochemistry, Geophysics, Geosystems 19, no. 2 (February 2018): 396–414. https://doi.org/10.1002/2017GC007281.

 

Lecture 4


Lectures 5-8: Deforming Planet (David Al-Attar)


Lecture 5

  • Austermann, J., Mitrovica, J.X., Latychev, K. & Milne, G.A., 2013. Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate. Nature Geoscience, 6, 553. https://doi.org/10.1038/ngeo1859.
  • Coleman B. D. & Noll W., 1961. Foundations of linear viscoelasticity. Rev. Mod. Phys., 33, 239—249. https://doi.org/10.1103/RevModPhys.33.239.
  • Crawford O., Al-Attar D., Tromp J., & Mitrovica J.X., 2017. Forward and inverse modelling of post-seismic deformation, Geophys. J. Int., 208, 845—876. https://doi.org/10.1093/gji/ggw414.
  • Crawford O., 2018. On the Viscoelastic Deformation of the Earth. PhD Thesis, University of Cambridge.
  • Day, W.A., 1971. Restrictions on relaxation functions in linear viscoelasticity, Q. J. Mech. Appl. Math., 24, 487–497. https://doi.org/10.1093/qjmam/24.4.487.
  • Gurtin, M.E., 1968. On the thermodynamics of materials with memory. Archive for Rational Mechanics and Analysis, 28, 40–50. https://doi.org/10.1007/BF00281562.
  • Jackson I., 2015. Properties of Rocks and Minerals – Physical Origins of Anelasticity and Attenuation in Rock. In Treatise on Geophysics Vol. 2. Elsevier, Amsterdam, pp. 539-571.
  • Lau, H.C., Mitrovica, J.X., Austermann, J., Crawford, O., Al-Attar, D. & Latychev, K., 2016. Inferences of mantle viscosity based on ice age data sets: Radial structure. J. Geophys. Res., 121, 6991—7012. https://doi.org/10.1002/2016JB013043.
  • Müller G., 1986. Generalized Maxwell bodies and estimates of mantle viscosity. Geophys. J. Roy. astron. Soc.. 87, 1113–1141. https://doi.org/10.1111/j.1365-246X.1986.tb01986.x.
  • O’Connell, R.J. & Budiansky, B., 1978. Measures of dissipation in viscoelastic media, Geophys. Res. Lett., 5, 5-8. https://doi.org/10.1029/GL005i001p00005.

 

Lecture 7

 

Lecture 8

Option 4 - Records of Environmental Change in Earth History

This is the suggested reading list for the 2018-19 course 'Records of Environmental Change in Earth History', lectured by Alex Liu.

Option 4

Lecture 1

  • Butterfield, Nicholas J. 2015. “The Neoproterozoic.” Current Biology 25 (19): R859–63. https://doi.org/10.1016/j.cub.2015.07.021.
  • Erwin, Douglas H. 1992. “A Preliminary Classification of Evolutionary Radiations.” Historical Biology 6 (2): 133–47. https://doi.org/10.1080/10292389209380423.
  • Jablonski, David. 1994. “Extinctions in the Fossil Record.” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 344 (1307): 11–17. https://doi.org/10.1098/rstb.1994.0045.
  • Krug, Andrew Z., and Mark E. Patzkowsky. 2015. “Phylogenetic Clustering of Origination and Extinction across the Late Ordovician Mass Extinction.” Edited by Matt Friedman. PLOS ONE 10 (12): e0144354. https://doi.org/10.1371/journal.pone.0144354.
  • McGhee, George R., Matthew E. Clapham, Peter M. Sheehan, David J. Bottjer, and Mary L. Droser. 2013. “A New Ecological-Severity Ranking of Major Phanerozoic Biodiversity Crises.” Palaeogeography, Palaeoclimatology, Palaeoecology 370 (January): 260–70. https://doi.org/10.1016/j.palaeo.2012.12.019.
  • Muschick, Moritz, Adrian Indermaur, and Walter Salzburger. 2012. “Convergent Evolution within an Adaptive Radiation of Cichlid Fishes.” Current Biology 22 (24): 2362–68. https://doi.org/10.1016/j.cub.2012.10.048.
  • Raup, D. M., and J. J. Sepkoski. 1984. “Periodicity of Extinctions in the Geologic Past.” Proceedings of the National Academy of Sciences 81 (3): 801–5. https://doi.org/10.1073/pnas.81.3.801.
  • Self, S, Anja Schmidt, and TA Mather. 2014. Emplacement Characteristics, Time Scales, and Volcanic Gas Release Rates of Continental Flood Basalt Eruptions on Earth. Vol. 505. https://doi.org/10.1130/2014.2505(16).
  • Wignall, P.B. 2001. “Large Igneous Provinces and Mass Extinctions.” Earth-Science Reviews 53 (1–2): 1–33. https://doi.org/10.1016/S0012-8252(00)00037-4.

 

Lecture 2

  • Baker, M. E. 2006. “The Genetic Response to Snowball Earth: Role of HSP90 in the Cambrian Explosion.” Geobiology 4 (1): 11–14. https://doi.org/10.1111/j.1472-4669.2006.00067.x.
  • Bobrovskiy, Ilya, Janet M. Hope, Andrey Ivantsov, Benjamin J. Nettersheim, Christian Hallmann, and Jochen J. Brocks. 2018. “Ancient Steroids Establish the Ediacaran Fossil Dickinsonia as One of the Earliest Animals.” Science 361 (6408): 1246–49. https://doi.org/10.1126/science.aat7228.
  • Boyle, R. A., T. W. Dahl, A. W. Dale, G. A. Shields-Zhou, M. Zhu, M. D. Brasier, D. E. Canfield, and T. M. Lenton. 2014. “Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation.” Nature Geoscience 7 (9): 671–76. https://doi.org/10.1038/ngeo2213.
  • Boyle, R. A., T. M. Lenton, and H. T. P. Williams. 2007. “Neoproterozoic ‘Snowball Earth’ Glaciations and the Evolution of Altruism.” Geobiology 5 (4): 337–49. https://doi.org/10.1111/j.1472-4669.2007.00115.x.
  • Briggs, Derek E.G. 2015. “The Cambrian Explosion.” Current Biology 25 (19): R864–68. https://doi.org/10.1016/j.cub.2015.04.047.
  • Butterfield, N. J. 2018. “Oxygen, Animals and Aquatic Bioturbation: An Updated Account.” Geobiology 16 (1): 3–16. https://doi.org/10.1111/gbi.12267.
  • Butterfield, Nicholas J. 2011. “Animals and the Invention of the Phanerozoic Earth System.” Trends in Ecology & Evolution 26 (2): 81–87. https://doi.org/10.1016/j.tree.2010.11.012.
  • Butterfield, Nicholas J. 2015. “The Neoproterozoic.” Current Biology 25 (19): R859–63. https://doi.org/10.1016/j.cub.2015.07.021.
  • Campbell, Ian H., and Richard J. Squire. 2010. “The Mountains That Triggered the Late Neoproterozoic Increase in Oxygen: The Second Great Oxidation Event.” Geochimica et Cosmochimica Acta 74 (15): 4187–4206. https://doi.org/10.1016/j.gca.2010.04.064.
  • Corsetti, Frank A. 2015. “Research Focus: Life During Neoproterozoic Snowball Earth.” Geology 43 (6): 559–60. https://doi.org/10.1130/focus062015.1.
  • Cui, Huan, Alan J. Kaufman, Shuhai Xiao, Chuanming Zhou, and Xiao-Ming Liu. 2017. “Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane-Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China.” Chemical Geology 450 (February): 59–80. https://doi.org/10.1016/j.chemgeo.2016.12.010.
  • Cunningham, John A., Kelly Vargas, Zongjun Yin, Stefan Bengtson, and Philip C. J. Donoghue. 2017. “The Weng’an Biota (Doushantuo Formation): An Ediacaran Window on Soft-Bodied and Multicellular Microorganisms.” Journal of the Geological Society 174 (5): 793–802. https://doi.org/10.1144/jgs2016-142.
  • dos Reis, Mario, Yuttapong Thawornwattana, Konstantinos Angelis, Maximilian J. Telford, Philip C.J. Donoghue, and Ziheng Yang. 2015. “Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales.” Current Biology 25 (22): 2939–50. https://doi.org/10.1016/j.cub.2015.09.066.
  • Dunn, Frances S., Alexander G. Liu, and Philip C. J. Donoghue. 2018. “Ediacaran Developmental Biology: Ediacaran Developmental Biology.” Biological Reviews 93 (2): 914–32. https://doi.org/10.1111/brv.12379.
  • Dunn, FS, and Alexander Liu. 2017. “Fossil Focus: The Ediacaran Biota.” Apollo - University of Cambridge Repository, January. https://doi.org/10.17863/cam.7045.
  • Erwin, D. H., M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson. 2011. “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals.” Science 334 (6059): 1091–97. https://doi.org/10.1126/science.1206375.
  • Erwin, Douglas H., and Sarah Tweedt. 2012. “Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa.” Evolutionary Ecology 26 (2): 417–33. https://doi.org/10.1007/s10682-011-9505-7.
  • Halverson, Galen P., Paul F. Hoffman, Daniel P. Schrag, Adam C. Maloof, and A. Hugh N. Rice. 2005. “Toward a Neoproterozoic Composite Carbon-Isotope Record.” Geological Society of America Bulletin 117 (9): 1181. https://doi.org/10.1130/B25630.1.
  • Hoffman, P. F. 1998. “A Neoproterozoic Snowball Earth.” Science 281 (5381): 1342–46. https://doi.org/10.1126/science.281.5381.1342.
  • Hoffman, P. F. . 2016. “Cryoconite Pans on Snowball Earth: Supraglacial Oases for Cryogenian Eukaryotes?” Geobiology 14 (6): 531–42. https://doi.org/10.1111/gbi.12191.
  • Johnston, D.T., S.W. Poulton, T. Goldberg, V.N. Sergeev, V. Podkovyrov, N.G. Vorob’eva, A. Bekker, and A.H. Knoll. 2012. “Late Ediacaran Redox Stability and Metazoan Evolution.” Earth and Planetary Science Letters 335–336 (June): 25–35. https://doi.org/10.1016/j.epsl.2012.05.010.
  • Laflamme, Marc, Simon A.F. Darroch, Sarah M. Tweedt, Kevin J. Peterson, and Douglas H. Erwin. 2013. “The End of the Ediacara Biota: Extinction, Biotic Replacement, or Cheshire Cat?” Gondwana Research 23 (2): 558–73. https://doi.org/10.1016/j.gr.2012.11.004.
  • Lenton, Timothy M., Richard A. Boyle, Simon W. Poulton, Graham A. Shields-Zhou, and Nicholas J. Butterfield. 2014. “Co-Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era.” Nature Geoscience 7 (4): 257–65. https://doi.org/10.1038/ngeo2108.
  • Li, Zheng-Xiang, David A.D. Evans, and Galen P. Halverson. 2013. “Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland.” Sedimentary Geology 294 (August): 219–32. https://doi.org/10.1016/j.sedgeo.2013.05.016.
  • McKenzie, N. Ryan, Nigel C. Hughes, Benjamin C. Gill, and Paul M. Myrow. 2014. “Plate Tectonic Influences on Neoproterozoic–early Paleozoic Climate and Animal Evolution.” Geology 42 (2): 127–30. https://doi.org/10.1130/G34962.1.
  • Moczydlowska, M. 2008. “The Ediacaran Microbiota and the Survival of Snowball Earth Conditions.” Precambrian Research 167 (1–2): 1–15. https://doi.org/10.1016/j.precamres.2008.06.008.
  • Narbonne, G.M., S. Xiao, G.A. Shields, and J.G. Gehling. 2012. “The Ediacaran Period.” In The Geologic Time Scale, 413–35. Elsevier. https://doi.org/10.1016/B978-0-444-59425-9.00018-4.
  • Nielsen, Claus. 2008. “Six Major Steps in Animal Evolution: Are We Derived Sponge Larvae?: Six Major Steps in Animal Evolution.” Evolution & Development 10 (2): 241–57. https://doi.org/10.1111/j.1525-142X.2008.00231.x.
  • Paulsen, Timothy, Chad Deering, Jakub Sliwinski, Olivier Bachmann, and Marcel Guillong. 2017. “Evidence for a Spike in Mantle Carbon Outgassing during the Ediacaran Period.” Nature Geoscience 10 (12): 930–34. https://doi.org/10.1038/s41561-017-0011-6.
  • Seilacher, Adolf. 1989. “Vendozoa: Organismic Construction in the Proterozoic Biosphere.” Lethaia 22 (3): 229–39. https://doi.org/10.1111/j.1502-3931.1989.tb01332.x.
  • Shields-Zhou, Graham, and Lawrence Och. 2011. “The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences.” GSA Today 21 (3): 4–11. https://doi.org/10.1130/GSATG102A.1.
  • Shumlyanskyy, Leonid, Anna Nosova, Kjell Billström, Ulf Söderlund, Per-Gunnar Andréasson, and Oksana Kuzmenkova. 2016. “The U–Pb Zircon and Baddeleyite Ages of the Neoproterozoic Volyn Large Igneous Province: Implication for the Age of the Magmatism and the Nature of a Crustal Contaminant.” GFF 138 (1): 17–30. https://doi.org/10.1080/11035897.2015.1123289.
  • Smith, M. P., and D. A. T. Harper. 2013. “Causes of the Cambrian Explosion.” Science 341 (6152): 1355–56. https://doi.org/10.1126/science.1239450.
  • Sperling, E. A., C. A. Frieder, A. V. Raman, P. R. Girguis, L. A. Levin, and A. H. Knoll. 2013. “Oxygen, Ecology, and the Cambrian Radiation of Animals.” Proceedings of the National Academy of Sciences 110 (33): 13446–51. https://doi.org/10.1073/pnas.1312778110.
  • Wood, Rachel, and Douglas H. Erwin. 2018. “Innovation Not Recovery: Dynamic Redox Promotes Metazoan Radiations: Dynamic Redox Promotes Radiations.” Biological Reviews 93 (2): 863–73. https://doi.org/10.1111/brv.12375.
  • Xiao, Shuhai, and Andrew H. Knoll. 2000. “Phosphatized Animal Embryos from the Neoproterozoic Doushantuo Formation at Weng’An, Guizhou, South China.” Journal of Paleontology 74 (5): 767–88. https://doi.org/10.1666/0022-3360(2000)074<0767:PAEFTN>2.0.CO;2.
  • Yuan, Xunlai, Zhe Chen, Shuhai Xiao, Chuanming Zhou, and Hong Hua. 2011. “An Early Ediacaran Assemblage of Macroscopic and Morphologically Differentiated Eukaryotes.” Nature 470 (7334): 390–93. https://doi.org/10.1038/nature09810.
  • Zhang, Xingliang, Degan Shu, Jian Han, Zhifei Zhang, Jianni Liu, and Dongjing Fu. 2014. “Triggers for the Cambrian Explosion: Hypotheses and Problems.” Gondwana Research 25 (3): 896–909. https://doi.org/10.1016/j.gr.2013.06.001.

 

Lecture 3

  • Ahm, Anne-Sofie C., Christian J. Bjerrum, and Emma U. Hammarlund. 2017. “Disentangling the Record of Diagenesis, Local Redox Conditions, and Global Seawater Chemistry during the Latest Ordovician Glaciation.” Earth and Planetary Science Letters 459 (February): 145–56. https://doi.org/10.1016/j.epsl.2016.09.049.
  • Brenchley, P. J., J. D. Marshall, G. A. F. Carden, D. B. R. Robertson, D. G. F. Long, T. Meidla, L. Hints, and T. F. Anderson. 1994. “Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period.” Geology 22 (4): 295–98. https://doi.org/10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2.
  • Crowley, Thomas J., and Steven K. Baum. 1995. “Reconciling Late Ordovician (440 Ma) Glaciation with Very High (14X) CO 2 Levels.” Journal of Geophysical Research: Atmospheres 100 (D1): 1093–1101. https://doi.org/10.1029/94JD02521.
  • Delabroye, A., and M. Vecoli. 2010. “The End-Ordovician Glaciation and the Hirnantian Stage: A Global Review and Questions about Late Ordovician Event Stratigraphy.” Earth-Science Reviews 98 (3–4): 269–82. https://doi.org/10.1016/j.earscirev.2009.10.010.
  • Finnegan, S., N. A. Heim, S. E. Peters, and W. W. Fischer. 2012. “Climate Change and the Selective Signature of the Late Ordovician Mass Extinction.” Proceedings of the National Academy of Sciences 109 (18): 6829–34. https://doi.org/10.1073/pnas.1117039109.
  • Fortey, Richard A., and L. Robin M. Cocks. 2005. “Late Ordovician Global Warming—The Boda Event.” Geology 33 (5): 405. https://doi.org/10.1130/G21180.1.
  • Ghienne, Jean-François, André Desrochers, Thijs R.A. Vandenbroucke, Aicha Achab, Esther Asselin, Marie-Pierre Dabard, Claude Farley, et al. 2014. “A Cenozoic-Style Scenario for the End-Ordovician Glaciation.” Nature Communications 5 (1). https://doi.org/10.1038/ncomms5485.
  • Hammarlund, Emma U., Tais W. Dahl, David A.T. Harper, David P.G. Bond, Arne T. Nielsen, Christian J. Bjerrum, Niels H. Schovsbo, Hans P. Schönlaub, Jan A. Zalasiewicz, and Donald E. Canfield. 2012. “A Sulfidic Driver for the End-Ordovician Mass Extinction.” Earth and Planetary Science Letters 331–332 (May): 128–39. https://doi.org/10.1016/j.epsl.2012.02.024.
  • Harper, David A.T., Emma U. Hammarlund, and Christian M.Ø. Rasmussen. 2014. “End Ordovician Extinctions: A Coincidence of Causes.” Gondwana Research 25 (4): 1294–1307. https://doi.org/10.1016/j.gr.2012.12.021.
  • Herrmann, Achim D, Bernd J Haupt, Mark E Patzkowsky, Dan Seidov, and Rudy L Slingerland. 2004. “Response of Late Ordovician Paleoceanography to Changes in Sea Level, Continental Drift, and Atmospheric PCO2: Potential Causes for Long-Term Cooling and Glaciation.” Palaeogeography, Palaeoclimatology, Palaeoecology 210 (2–4): 385–401. https://doi.org/10.1016/j.palaeo.2004.02.034.
  • Holland, Steven M. 2016. “Ecological Disruption Precedes Mass Extinction.” Proceedings of the National Academy of Sciences 113 (30): 8349–51. https://doi.org/10.1073/pnas.1608630113.
  • Isozaki, Yukio, and Thomas Servais. 2018. “The Hirnantian (Late Ordovician) and End-Guadalupian (Middle Permian) Mass-Extinction Events Compared.” Lethaia 51 (2): 173–86. https://doi.org/10.1111/let.12252.
  • Jones, David S., Anna M. Martini, David A. Fike, and Kunio Kaiho. 2017. “A Volcanic Trigger for the Late Ordovician Mass Extinction? Mercury Data from South China and Laurentia.” Geology 45 (7): 631–34. https://doi.org/10.1130/G38940.1.
  • Kump, L.R, M.A Arthur, M.E Patzkowsky, M.T Gibbs, D.S Pinkus, and P.M Sheehan. 1999. “A Weathering Hypothesis for Glaciation at High Atmospheric PCO2 during the Late Ordovician.” Palaeogeography, Palaeoclimatology, Palaeoecology 152 (1–2): 173–87. https://doi.org/10.1016/S0031-0182(99)00046-2.
  • Layou, K. M. 2009. “Ecological Restructuring after Extinction: The Late Ordovician (Mohawkian) of the Eastern United States.” PALAIOS 24 (2): 118–30. https://doi.org/10.2110/palo.2008.p08-012r.
  • Sheehan, Peter M. 2001. “The Late Ordovician Mass Extinction.” Annual Review of Earth and Planetary Sciences 29 (1): 331–64. https://doi.org/10.1146/annurev.earth.29.1.331.
  • Sheets, H. David, Charles E. Mitchell, Michael J. Melchin, Jason Loxton, Petr Štorch, Kristi L. Carlucci, and Andrew D. Hawkins. 2016. “Graptolite Community Responses to Global Climate Change and the Late Ordovician Mass Extinction.” Proceedings of the National Academy of Sciences 113 (30): 8380–85. https://doi.org/10.1073/pnas.1602102113.
  • Sutcliffe, Owen E., Julian A. Dowdeswell, Robert J. Whittington, Johannes N. Theron, and Jonathan Craig. 2000. “Calibrating the Late Ordovician Glaciation and Mass Extinction by the Eccentricity Cycles of Earth’s Orbit.” Geology 28 (11): 967. https://doi.org/10.1130/0091-7613(2000)28<967:CTLOGA>2.0.CO;2.
  • Vandenbroucke, Thijs R.A., Howard A. Armstrong, Mark Williams, Florentin Paris, Koen Sabbe, Jan A. Zalasiewicz, Jaak Nõlvak, and Jacques Verniers. 2010. “Epipelagic Chitinozoan Biotopes Map a Steep Latitudinal Temperature Gradient for Earliest Late Ordovician Seas: Implications for a Cooling Late Ordovician Climate.” Palaeogeography, Palaeoclimatology, Palaeoecology 294 (3–4): 202–19. https://doi.org/10.1016/j.palaeo.2009.11.026.
  • Wang, F., J.-S. Lin, and K. Liu. 2011. “Steric Control of the Reaction of CH Stretch-Excited CHD3 with Chlorine Atom.” Science 331 (6019): 900–903. https://doi.org/10.1126/science.1199771.

 

Lecture 4

  • Benca, Jeffrey P., Ivo A. P. Duijnstee, and Cindy V. Looy. 2018. “UV-B–induced Forest Sterility: Implications of Ozone Shield Failure in Earth’s Largest Extinction.” Science Advances 4 (2): e1700618. https://doi.org/10.1126/sciadv.1700618.
  • Benton, Michael J., and Richard J. Twitchett. 2003. “How to Kill (Almost) All Life: The End-Permian Extinction Event.” Trends in Ecology & Evolution 18 (7): 358–65. https://doi.org/10.1016/S0169-5347(03)00093-4.
  • Berner, R. A. 2002. “Examination of Hypotheses for the Permo-Triassic Boundary Extinction by Carbon Cycle Modeling.” Proceedings of the National Academy of Sciences 99 (7): 4172–77. https://doi.org/10.1073/pnas.032095199.
  • Crain, J. N. 2005. “End States in One-Dimensional Atom Chains.” Science 307 (5710): 703–6. https://doi.org/10.1126/science.1106911.
  • Erwin, Douglas H. 1994. “The Permo–Triassic Extinction.” Nature 367 (6460): 231–36. https://doi.org/10.1038/367231a0.
  • Eshet, Yoram, Michael R. Rampino, and Henk Visscher. 1995. “Fungal Event and Palynological Record of Ecological Crisis and Recovery across the Permian-Triassic Boundary.” Geology 23 (11): 967. https://doi.org/10.1130/0091-7613(1995)023<0967:FEAPRO>2.3.CO;2.
  • Ezcurra, Martín D., and Richard J. Butler. 2018. “The Rise of the Ruling Reptiles and Ecosystem Recovery from the Permo-Triassic Mass Extinction.” Proceedings of the Royal Society B: Biological Sciences 285 (1880): 20180361. https://doi.org/10.1098/rspb.2018.0361.
  • Isozaki, Yukio, and Thomas Servais. 2018. “The Hirnantian (Late Ordovician) and End-Guadalupian (Middle Permian) Mass-Extinction Events Compared.” Lethaia 51 (2): 173–86. https://doi.org/10.1111/let.12252.
  • Kamo, Sandra L, Gerald K Czamanske, Yuri Amelin, Valeri A Fedorenko, D.W Davis, and V.R Trofimov. 2003. “Rapid Eruption of Siberian Flood-Volcanic Rocks and Evidence for Coincidence with the Permian–Triassic Boundary and Mass Extinction at 251 Ma.” Earth and Planetary Science Letters 214 (1–2): 75–91. https://doi.org/10.1016/S0012-821X(03)00347-9.
  • Kidder, David L., and Thomas R. Worsley. 2004. “Causes and Consequences of Extreme Permo-Triassic Warming to Globally Equable Climate and Relation to the Permo-Triassic Extinction and Recovery.” Palaeogeography, Palaeoclimatology, Palaeoecology 203 (3–4): 207–37. https://doi.org/10.1016/S0031-0182(03)00667-9.
  • Knoll, Andrew H., Richard K. Bambach, Jonathan L. Payne, Sara Pruss, and Woodward W. Fischer. 2007. “Paleophysiology and End-Permian Mass Extinction.” Earth and Planetary Science Letters 256 (3–4): 295–313. https://doi.org/10.1016/j.epsl.2007.02.018.
  • Martindale, Rowan C., William J. Foster, and Felicitász Velledits. 2019. “The Survival, Recovery, and Diversification of Metazoan Reef Ecosystems Following the End-Permian Mass Extinction Event.” Palaeogeography, Palaeoclimatology, Palaeoecology 513 (January): 100–115. https://doi.org/10.1016/j.palaeo.2017.08.014.
  • Metcalfe, I., J.L. Crowley, R.S. Nicoll, and M. Schmitz. 2015. “High-Precision U-Pb CA-TIMS Calibration of Middle Permian to Lower Triassic Sequences, Mass Extinction and Extreme Climate-Change in Eastern Australian Gondwana.” Gondwana Research 28 (1): 61–81. https://doi.org/10.1016/j.gr.2014.09.002.
  • Montes, C., A. Cardona, C. Jaramillo, A. Pardo, J. C. Silva, V. Valencia, C. Ayala, et al. 2015. “Middle Miocene Closure of the Central American Seaway.” Science 348 (6231): 226–29. https://doi.org/10.1126/science.aaa2815.
  • Raup, D. M. 1979. “Size of the Permo-Triassic Bottleneck and Its Evolutionary Implications.” Science 206 (4415): 217–18. https://doi.org/10.1126/science.206.4415.217.
  • Renne, P. R., and A. R. Basu. 1991. “Rapid Eruption of the Siberian Traps Flood Basalts at the Permo-Triassic Boundary.” Science 253 (5016): 176–79. https://doi.org/10.1126/science.253.5016.176.
  • Retallack, Gregory J., John J. Veevers, and Ric Morante. 1996. “Global Coal Gap between Permian–Triassic Extinction and Middle Triassic Recovery of Peat-Forming Plants.” Geological Society of America Bulletin 108 (2): 195–207. https://doi.org/10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2.
  • Schubert, Jennifer K., and David J. Bottjer. 1992. “Early Triassic Stromatolites as Post-Mass Extinction Disaster Forms.” Geology 20 (10): 883. https://doi.org/10.1130/0091-7613(1992)020<0883:ETSAPM>2.3.CO;2.
  • Visscher, H., C. V. Looy, M. E. Collinson, H. Brinkhuis, J. H. A. van Konijnenburg-van Cittert, W. M. Kurschner, and M. A. Sephton. 2004. “Environmental Mutagenesis during the End-Permian Ecological Crisis.” Proceedings of the National Academy of Sciences 101 (35): 12952–56. https://doi.org/10.1073/pnas.0404472101.
  • Wignall, P. B., and R. J. Twitchett. 1996. “Oceanic Anoxia and the End Permian Mass Extinction.” Science 272 (5265): 1155–58. https://doi.org/10.1126/science.272.5265.1155.
  • Wood, Rachel, and Douglas H. Erwin. 2018. “Innovation Not Recovery: Dynamic Redox Promotes Metazoan Radiations: Dynamic Redox Promotes Radiations.” Biological Reviews 93 (2): 863–73. https://doi.org/10.1111/brv.12375.
  • Xie, Shucheng, Thomas J. Algeo, Wenfeng Zhou, Xiaoyan Ruan, Genming Luo, Junhua Huang, and Jiaxin Yan. 2017. “Contrasting Microbial Community Changes during Mass Extinctions at the Middle/Late Permian and Permian/Triassic Boundaries.” Earth and Planetary Science Letters 460 (February): 180–91. https://doi.org/10.1016/j.epsl.2016.12.015.

 

Lecture 5

  • Berner, Robert A., and David J. Beerling. 2007. “Volcanic Degassing Necessary to Produce a CaCO3 Undersaturated Ocean at the Triassic–Jurassic Boundary.” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 368–73. https://doi.org/10.1016/j.palaeo.2006.06.039.
  • Blackburn, T. J., P. E. Olsen, S. A. Bowring, N. M. McLean, D. V. Kent, J. Puffer, G. McHone, E. T. Rasbury, and M. Et-Touhami. 2013. “Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province.” Science 340 (6135): 941–45. https://doi.org/10.1126/science.1234204.
  • Cohen, Anthony S., and Angela L. Coe. 2002. “New Geochemical Evidence for the Onset of Volcanism in the Central Atlantic Magmatic Province and Environmental Change at the Triassic-Jurassic Boundary.” Geology 30 (3): 267. https://doi.org/10.1130/0091-7613(2002)030<0267:NGEFTO>2.0.CO;2.
  • Dunhill, Alexander M., William J. Foster, James Sciberras, and Richard J. Twitchett. 2018. “Impact of the Late Triassic Mass Extinction on Functional Diversity and Composition of Marine Ecosystems.” Edited by Michael Hautmann. Palaeontology 61 (1): 133–48. https://doi.org/10.1111/pala.12332.
  • Greene, Sarah E., Rowan C. Martindale, Kathleen A. Ritterbush, David J. Bottjer, Frank A. Corsetti, and William M. Berelson. 2012. “Recognising Ocean Acidification in Deep Time: An Evaluation of the Evidence for Acidification across the Triassic-Jurassic Boundary.” Earth-Science Reviews 113 (1–2): 72–93. https://doi.org/10.1016/j.earscirev.2012.03.009.
  • Hallam, Anthony. 2002. “How Catastrophic Was the End-Triassic Mass Extinction?” Lethaia 35 (2): 147–57. https://doi.org/10.1111/j.1502-3931.2002.tb00075.x.
  • Hautmann, Michael. 2004. “Effect of End-Triassic CO2 Maximum on Carbonate Sedimentation and Marine Mass Extinction.” Facies 50 (2). https://doi.org/10.1007/s10347-004-0020-y.
  • Hesselbo, Stephen P., Christopher A. McRoberts, and József Pálfy. 2007. “Triassic–Jurassic Boundary Events: Problems, Progress, Possibilities.” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 1–10. https://doi.org/10.1016/j.palaeo.2006.06.020.
  • Hesselbo, Stephen P., Stuart A. Robinson, Finn Surlyk, and Stefan Piasecki. 2002. “Terrestrial and Marine Extinction at the Triassic-Jurassic Boundary Synchronized with Major Carbon-Cycle Perturbation: A Link to Initiation of Massive Volcanism?” Geology 30 (3): 251. https://doi.org/10.1130/0091-7613(2002)030<0251:TAMEAT>2.0.CO;2.
  • Kiessling, Wolfgang, Martin Aberhan, Benjamin Brenneis, and Peter J. Wagner. 2007. “Extinction Trajectories of Benthic Organisms across the Triassic–Jurassic Boundary.” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 201–22. https://doi.org/10.1016/j.palaeo.2006.06.029.
  • Lindström, Sofie, Bas van de Schootbrugge, Katrine H. Hansen, Gunver K. Pedersen, Peter Alsen, Nicolas Thibault, Karen Dybkjær, Christian J. Bjerrum, and Lars Henrik Nielsen. 2017. “A New Correlation of Triassic–Jurassic Boundary Successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A Time-Line for the End-Triassic Mass Extinction.” Palaeogeography, Palaeoclimatology, Palaeoecology 478 (July): 80–102. https://doi.org/10.1016/j.palaeo.2016.12.025.
  • McElwain, J. C. 1999. “Fossil Plants and Global Warming at the Triassic-Jurassic Boundary.” Science 285 (5432): 1386–90. https://doi.org/10.1126/science.285.5432.1386.
  • Olsen, P. E.,  D. V. Kent, H. D. Sues, E. C., C. Koeberl, H. Huber, Rainforth, S. J. Fowell, M. J. Szajna, and B. W. Hartline. 2002. “Ascent of Dinosaurs Linked to an Iridium Anomaly at the Triassic-Jurassic Boundary.” Science 296 (5571): 1305–7. https://doi.org/10.1126/science.1065522.
  • Olsen, P. E., H. D. Sues, E. C. Rainforth, D. V. Kent, C. Koeberl, H. Huber, A. Montanari, S. J. Fowell, M. J. Szajna, and B. W. Hartline. 2003. “Response to Comment on ‘Ascent of Dinosaurs Linked to an Iridium Anomaly at the Triassic-Jurassic Boundary.’” Science 301 (5630): 169c–169. https://doi.org/10.1126/science.1083928.
  • Percival, Lawrence M. E., Micha Ruhl, Stephen P. Hesselbo, Hugh C. Jenkyns, Tamsin A. Mather, and Jessica H. Whiteside. 2017. “Mercury Evidence for Pulsed Volcanism during the End-Triassic Mass Extinction.” Proceedings of the National Academy of Sciences 114 (30): 7929–34. https://doi.org/10.1073/pnas.1705378114.
  • Schoene, Blair, Jean Guex, Annachiara Bartolini, Urs Schaltegger, and Terrence J. Blackburn. 2010. “Correlating the End-Triassic Mass Extinction and Flood Basalt Volcanism at the 100 Ka Level.” Geology 38 (5): 387–90. https://doi.org/10.1130/G30683.1.
  • Schootbrugge, B. van de, F. Tremolada, Y. Rosenthal, T.R. Bailey, S. Feist-Burkhardt, H. Brinkhuis, J. Pross, D.V. Kent, and P.G. Falkowski. 2007. “End-Triassic Calcification Crisis and Blooms of Organic-Walled ‘Disaster Species.’” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 126–41. https://doi.org/10.1016/j.palaeo.2006.06.026.
  • Simms, Michael J. 2003. “Uniquely Extensive Seismite from the Latest Triassic of the United Kingdom: Evidence for Bolide Impact?” Geology 31 (6): 557. https://doi.org/10.1130/0091-7613(2003)031<0557:UESFTL>2.0.CO;2.
  • Spray, John G., Simon P. Kelley, and David B. Rowley. 1998. “Evidence for a Late Triassic Multiple Impact Event on Earth.” Nature 392 (6672): 171–73. https://doi.org/10.1038/32397.

 

Lecture 6

  • Alvarez, L. W., W. Alvarez, F. Asaro, and H. V. Michel. 1980. “Extraterrestrial Cause for the Cretaceous-Tertiary Extinction.” Science 208 (4448): 1095–1108. https://doi.org/10.1126/science.208.4448.1095.
  • Archibald, J. D., W. A. Clemens, K. Padian, T. Rowe, N. Macleod, P. M. Barrett, A. Gale, et al. 2010. “Cretaceous Extinctions: Multiple Causes.” Science 328 (5981): 973–973. https://doi.org/10.1126/science.328.5981.973-a.
  • Belcher, Claire M., Margaret E. Collinson, Arthur R. Sweet, Alan R. Hildebrand, and Andrew C. Scott. 2003. “Fireball Passes and Nothing Burns—The Role of Thermal Radiation in the Cretaceous-Tertiary Event: Evidence from the Charcoal Record of North America.” Geology 31 (12): 1061. https://doi.org/10.1130/G19989.1.
  • Brett, Robin. 1992. “The Cretaceous-Tertiary Extinction: A Lethal Mechanism Involving Anhydrite Target Rocks.” Geochimica et Cosmochimica Acta 56 (9): 3603–6. https://doi.org/10.1016/0016-7037(92)90406-9.
  • Field, Daniel J., Antoine Bercovici, Jacob S. Berv, Regan Dunn, David E. Fastovsky, Tyler R. Lyson, Vivi Vajda, and Jacques A. Gauthier. 2018. “Early Evolution of Modern Birds Structured by Global Forest Collapse at the End-Cretaceous Mass Extinction.” Current Biology 28 (11): 1825–1831.e2. https://doi.org/10.1016/j.cub.2018.04.062.
  • Gale, Andrew S. 2006. “The Cretaceous—Palaeogene Boundary on the Brazos River, Falls County, Texas: Is There Evidence for Impact-Induced Tsunami Sedimentation?” Proceedings of the Geologists’ Association 117 (2): 173–85. https://doi.org/10.1016/S0016-7878(06)80008-8.
  • Keller, G., T. Adatte, A. Pardo, S. Bajpai, A. Khosla, and B. Samant. 2010. “Cretaceous Extinctions: Evidence Overlooked.” Science 328 (5981): 974–75. https://doi.org/10.1126/science.328.5981.974-a.
  • Keller, G., E. Barrera, B. Schmitz, and E. Mattson. 1993. “Gradual Mass Extinction, Species Survivorship, and Long-Term Environmental Changes across the Cretaceous-Tertiary Boundary in High Latitudes.” Geological Society of America Bulletin 105 (8): 979–97. https://doi.org/10.1130/0016-7606(1993)105<0979:GMESSA>2.3.CO;2.
  • Keller, Gerta, Paula Mateo, Jahnavi Punekar, Hassan Khozyem, Brian Gertsch, Jorge Spangenberg, Andre Mbabi Bitchong, and Thierry Adatte. 2018. “Environmental Changes during the Cretaceous-Paleogene Mass Extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene.” Gondwana Research 56 (April): 69–89. https://doi.org/10.1016/j.gr.2017.12.002.
  • Keller, Gerta, Jahnavi Punekar, and Paula Mateo. 2016. “Upheavals during the Late Maastrichtian: Volcanism, Climate and Faunal Events Preceding the End-Cretaceous Mass Extinction.” Palaeogeography, Palaeoclimatology, Palaeoecology 441 (January): 137–51. https://doi.org/10.1016/j.palaeo.2015.06.034.
  • Luo, Zhe-Xi. 2007. “Transformation and Diversification in Early Mammal Evolution.” Nature 450 (7172): 1011–19. https://doi.org/10.1038/nature06277.
  • Macleod, N., P. F. Rawson, P. L. Forey, F. T. Banner, M. K. Boudagher-Fadel, P. R. Bown, J. A. Burnett, et al. 1997. “The Cretaceous-Tertiary Biotic Transition.” Journal of the Geological Society 154 (2): 265–92. https://doi.org/10.1144/gsjgs.154.2.0265.
  • Macleod, Norman, and Gerta Keller. 1991. “How Complete Are Cretaceous /Tertiary Boundary Sections? A Chronostratigraphic Estimate Based on Graphic Correlation.” Geological Society of America Bulletin 103 (11): 1439. https://doi.org/10.1130/0016-7606(1991)103<1439:HCACTB>2.3.CO;2.
  • Ohno, Sohsuke, Toshihiko Kadono, Kosuke Kurosawa, Taiga Hamura, Tatsuhiro Sakaiya, Keisuke Shigemori, Yoichiro Hironaka, et al. 2014. “Production of Sulphate-Rich Vapour during the Chicxulub Impact and Implications for Ocean Acidification.” Nature Geoscience 7 (4): 279–82. https://doi.org/10.1038/ngeo2095.
  • Renne, Paul R., Courtney J. Sprain, Mark A. Richards, Stephen Self, Loÿc Vanderkluysen, and Kanchan Pande. 2015. “State Shift in Deccan Volcanism at the Cretaceous-Paleogene Boundary, Possibly Induced by Impact.” Science 350 (6256): 76–78. https://doi.org/10.1126/science.aac7549.
  • Richards, Mark A., Walter Alvarez, Stephen Self, Leif Karlstrom, Paul R. Renne, Michael Manga, Courtney J. Sprain, Jan Smit, Loÿc Vanderkluysen, and Sally A. Gibson. 2015. “Triggering of the Largest Deccan Eruptions by the Chicxulub Impact.” Geological Society of America Bulletin 127 (11–12): 1507–20. https://doi.org/10.1130/B31167.1.
  • Sakamoto, Manabu, Michael J. Benton, and Chris Venditti. 2016. “Dinosaurs in Decline Tens of Millions of Years before Their Final Extinction.” Proceedings of the National Academy of Sciences 113 (18): 5036–40. https://doi.org/10.1073/pnas.1521478113.
  • Schoene, B., K. M. Samperton, M. P. Eddy, G. Keller, T. Adatte, S. A. Bowring, S. F. R. Khadri, and B. Gertsch. 2015. “U-Pb Geochronology of the Deccan Traps and Relation to the End-Cretaceous Mass Extinction.” Science 347 (6218): 182–84. https://doi.org/10.1126/science.aaa0118.
  • Schulte, P., L. Alegret, I. Arenillas, J. A. Arz, P. J. Barton, P. R. Bown, T. J. Bralower, G. L. Christeson, P. Claeys, C. S. Cockell, G. S. Collins, A. Deutsch, T. J. Goldin, K. Goto, J. M. Grajales-Nishimura, R. A. F. Grieve, S. P. S. Gulick, K. R. Johnson, W. Kiessling, C. Koeberl, D. A. Kring, K. G. MacLeod, et al. 2010. “The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary.” Science 327 (5970): 1214–18. https://doi.org/10.1126/science.1177265.
  • Schulte, P., L. Alegret, I. Arenillas, J. A. Arz, P. J. Barton, P. R. Bown, T. J. Bralower, G. L. Christeson, P. Claeys, C. S. Cockell, G. S. Collins, A. Deutsch, T. J. Goldin, K. Goto, J. M. Grajales-Nishimura, R. A. F. Grieve, S. P. S. Gulick, K. R. Johnson, W. Kiessling, C. Koeberl, D. A. Kring, K. G. Macleod, et al. 2010. “Response--Cretaceous Extinctions.” Science 328 (5981): 975–76. https://doi.org/10.1126/science.328.5981.975.
  • Springer, M. S., W. J. Murphy, E. Eizirik, and S. J. O’Brien. 2003. “Placental Mammal Diversification and the Cretaceous-Tertiary Boundary.” Proceedings of the National Academy of Sciences 100 (3): 1056–61. https://doi.org/10.1073/pnas.0334222100.
  • Tyrrell, Toby, Agostino Merico, and David Ian Armstrong McKay. 2015. “Severity of Ocean Acidification Following the End-Cretaceous Asteroid Impact.” Proceedings of the National Academy of Sciences 112 (21): 6556–61. https://doi.org/10.1073/pnas.1418604112.

 

Lecture 7

  • Bottomley, Richard, Richard Grieve, Derek York, and Victor Masaitis. 1997. “The Age of the Popigai Impact Event and Its Relation to Events at the Eocene/Oligocene Boundary.” Nature 388 (July): 365.
  • Bowen, Gabriel J., David J. Beerling, Paul L. Koch, James C. Zachos, and Thomas Quattlebaum. 2004. “A Humid Climate State during the Palaeocene/Eocene Thermal Maximum.” Nature 432 (7016): 495–99. https://doi.org/10.1038/nature03115.
  • Corliss, B. H., M.-P. Aubry, W. A. Berggren, J. M. Fenner, L. D. Keigwin, and G. Keller. 1984. “The Eocene/Oligocene Boundary Event in the Deep Sea.” Science 226 (4676): 806–10. https://doi.org/10.1126/science.226.4676.806.
  • Coxall, Helen K., Paul A. Wilson, Heiko Pälike, Caroline H. Lear, and Jan Backman. 2005. “Rapid Stepwise Onset of Antarctic Glaciation and Deeper Calcite Compensation in the Pacific Ocean.” Nature 433 (7021): 53–57. https://doi.org/10.1038/nature03135.
  • DeConto, Robert M., and David Pollard. 2003. “Rapid Cenozoic Glaciation of Antarctica Induced by Declining Atmospheric CO2.” Nature 421 (January): 245.
  • Dickens, G. R. 2011. “Down the Rabbit Hole: Toward Appropriate Discussion of Methane Release from Gas Hydrate Systems during the Paleocene-Eocene Thermal Maximum and Other Past Hyperthermal Events.” Climate of the Past 7 (3): 831–46. https://doi.org/10.5194/cp-7-831-2011.
  • Dickens, Gerald R., James R. O’Neil, David K. Rea, and Robert M. Owen. 1995. “Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene.” Paleoceanography 10 (6): 965–71. https://doi.org/10.1029/95PA02087.
  • Farley, K.A., and S.F. Eltgroth. 2003. “An Alternative Age Model for the Paleocene–Eocene Thermal Maximum Using Extraterrestrial 3He.” Earth and Planetary Science Letters 208 (3–4): 135–48. https://doi.org/10.1016/S0012-821X(03)00017-7.
  • Gingerich, Philip D. 2006. “Environment and Evolution through the Paleocene–Eocene Thermal Maximum.” Trends in Ecology & Evolution 21 (5): 246–53. https://doi.org/10.1016/j.tree.2006.03.006.
  • Gutjahr, Marcus, Andy Ridgwell, Philip F. Sexton, Eleni Anagnostou, Paul N. Pearson, Heiko Pälike, Richard D. Norris, Ellen Thomas, and Gavin L. Foster. 2017. “Very Large Release of Mostly Volcanic Carbon during the Palaeocene–Eocene Thermal Maximum.” Nature 548 (7669): 573–77. https://doi.org/10.1038/nature23646.
  • Hartenberger, Jean-Louis. 1998. “An Asian Grande Coupure.” Nature 394 (6691): 321–321. https://doi.org/10.1038/28501.
  • Higgins, John A., and Daniel P. Schrag. 2006. “Beyond Methane: Towards a Theory for the Paleocene–Eocene Thermal Maximum.” Earth and Planetary Science Letters 245 (3–4): 523–37. https://doi.org/10.1016/j.epsl.2006.03.009.
  • Keller, Gerta, Paula Mateo, Jahnavi Punekar, Hassan Khozyem, Brian Gertsch, Jorge Spangenberg, Andre Mbabi Bitchong, and Thierry Adatte. 2018. “Environmental Changes during the Cretaceous-Paleogene Mass Extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene.” Gondwana Research 56 (April): 69–89. https://doi.org/10.1016/j.gr.2017.12.002.
  • Lear, C. H., H. Elderfield, and P. A. Wilson. 2000. “Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite.” Science 287 (5451): 269–72. https://doi.org/10.1126/science.287.5451.269.
  • Lourens, Lucas J., Appy Sluijs, Dick Kroon, James C. Zachos, Ellen Thomas, Ursula Röhl, Julie Bowles, and Isabella Raffi. 2005. “Astronomical Pacing of Late Palaeocene to Early Eocene Global Warming Events.” Nature 435 (7045): 1083–87. https://doi.org/10.1038/nature03814.
  • Molina, Eustoquio. 2015. “Evidence and Causes of the Main Extinction Events in the Paleogene Based on Extinction and Survival Patterns of Foraminifera.” Earth-Science Reviews 140 (January): 166–81. https://doi.org/10.1016/j.earscirev.2014.11.008.
  • Pagani, M., M. Huber, Z. Liu, S. M. Bohaty, J. Henderiks, W. Sijp, S. Krishnan, and R. M. DeConto. 2011. “The Role of Carbon Dioxide During the Onset of Antarctic Glaciation.” Science 334 (6060): 1261–64. https://doi.org/10.1126/science.1203909.
  • Penman, Donald E., Bärbel Hönisch, Richard E. Zeebe, Ellen Thomas, and James C. Zachos. 2014. “Rapid and Sustained Surface Ocean Acidification during the Paleocene-Eocene Thermal Maximum.” Paleoceanography 29 (5): 357–69. https://doi.org/10.1002/2014PA002621.
  • Prave, A.R., C.R. Bates, C.H. Donaldson, H. Toland, D.J. Condon, D. Mark, and T.D. Raub. 2016. “Geology and Geochronology of the Tana Basin, Ethiopia: LIP Volcanism, Super Eruptions and Eocene–Oligocene Environmental Change.” Earth and Planetary Science Letters 443 (June): 1–8. https://doi.org/10.1016/j.epsl.2016.03.009.
  • Prothero, D R. 1994. “The Late Eocene-Oligocene Extinctions.” Annual Review of Earth and Planetary Sciences 22 (1): 145–65. https://doi.org/10.1146/annurev.ea.22.050194.001045.
  • Sahy, Diana, Daniel J. Condon, Dennis O. Terry, Anne U. Fischer, and Klaudia F. Kuiper. 2015. “Synchronizing Terrestrial and Marine Records of Environmental Change across the Eocene–Oligocene Transition.” Earth and Planetary Science Letters 427 (October): 171–82. https://doi.org/10.1016/j.epsl.2015.06.057.
  • Schaller, M. F., M. K. Fung, J. D. Wright, M. E. Katz, and D. V. Kent. 2016. “Impact Ejecta at the Paleocene-Eocene Boundary.” Science 354 (6309): 225–29. https://doi.org/10.1126/science.aaf5466.
  • Sun, Jimin, Xijun Ni, Shundong Bi, Wenyu Wu, Jie Ye, Jin Meng, and Brian F. Windley. 2014. “Synchronous Turnover of Flora, Fauna, and Climate at the Eocene–Oligocene Boundary in Asia.” Scientific Reports 4 (December): 7463. https://doi.org/10.1038/srep07463.
  • Svensen, Henrik, Sverre Planke, Anders Malthe-Sørenssen, Bjørn Jamtveit, Reidun Myklebust, Torfinn Rasmussen Eidem, and Sebastian S. Rey. 2004. “Release of Methane from a Volcanic Basin as a Mechanism for Initial Eocene Global Warming.” Nature 429 (6991): 542–45. https://doi.org/10.1038/nature02566.
  • Yao, Weiqi, Adina Paytan, and Ulrich G. Wortmann. 2018. “Large-Scale Ocean Deoxygenation during the Paleocene-Eocene Thermal Maximum.” Science 361 (6404): 804–6. https://doi.org/10.1126/science.aar8658.
  • Zachos, J. 2001. “Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.” Science 292 (5517): 686–93. https://doi.org/10.1126/science.1059412.
  • Zachos, J. C. 2003. “A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum.” Science 302 (5650): 1551–54. https://doi.org/10.1126/science.1090110.
  • Zachos, J. C. 2005. “Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum.” Science 308 (5728): 1611–15. https://doi.org/10.1126/science.1109004.
  • Zachos, J, and L Kump. 2005. “Carbon Cycle Feedbacks and the Initiation of Antarctic Glaciation in the Earliest Oligocene.” Global and Planetary Change 47 (1): 51–66. https://doi.org/10.1016/j.gloplacha.2005.01.001.
  • Zeebe, R. E., G. R. Dickens, A. Ridgwell, A. Sluijs, and E. Thomas. 2014. “Onset of Carbon Isotope Excursion at the Paleocene-Eocene Thermal Maximum Took Millennia, Not 13 Years.” Proceedings of the National Academy of Sciences 111 (12): E1062–63. https://doi.org/10.1073/pnas.1321177111.
  • Zeebe, Richard E., James C. Zachos, and Gerald R. Dickens. 2009. “Carbon Dioxide Forcing Alone Insufficient to Explain Palaeocene–Eocene Thermal Maximum Warming.” Nature Geoscience 2 (8): 576–80. https://doi.org/10.1038/ngeo578.

 

Lecture 8

  • Alroy, J. 2008. “Dynamics of Origination and Extinction in the Marine Fossil Record.” Proceedings of the National Academy of Sciences 105 (Supplement 1): 11536–42. https://doi.org/10.1073/pnas.0802597105.
  • Alroy, J. 2010. “The Shifting Balance of Diversity Among Major Marine Animal Groups.” Science 329 (5996): 1191–94. https://doi.org/10.1126/science.1189910.
  • Bambach, Richard K. 2006. “Phanerozoic Biodiversity Mass Extinctions.” Annual Review of Earth and Planetary Sciences 34 (1): 127–55. https://doi.org/10.1146/annurev.earth.33.092203.122654.
  • Benton, M. 1995. “Diversification and Extinction in the History of Life.” Science 268 (5207): 52–58. https://doi.org/10.1126/science.7701342.
  • Bond, David P.G., and Stephen E. Grasby. 2017. “On the Causes of Mass Extinctions.” Palaeogeography, Palaeoclimatology, Palaeoecology 478 (July): 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005.
  • Diffenbaugh, N. S., and C. B. Field. 2013. “Changes in Ecologically Critical Terrestrial Climate Conditions.” Science 341 (6145): 486–92. https://doi.org/10.1126/science.1237123.
  • Erlykin, Anatoly D., David A. T. Harper, Terry Sloan, and Arnold W. Wolfendale. 2018. “Periodicity in Extinction Rates.” Edited by Andrew Smith. Palaeontology 61 (1): 149–58. https://doi.org/10.1111/pala.12334.
  • Jones, Morgan T., Dougal A. Jerram, Henrik H. Svensen, and Clayton Grove. 2016. “The Effects of Large Igneous Provinces on the Global Carbon and Sulphur Cycles.” Palaeogeography, Palaeoclimatology, Palaeoecology 441 (January): 4–21. https://doi.org/10.1016/j.palaeo.2015.06.042.
  • Kravchinsky, Vadim A. 2012. “Paleozoic Large Igneous Provinces of Northern Eurasia: Correlation with Mass Extinction Events.” Global and Planetary Change 86–87 (April): 31–36. https://doi.org/10.1016/j.gloplacha.2012.01.007.
  • Melott, Adrian L., and Richard K. Bambach. 2017. “Comments on: Periodicity in the Extinction Rate and Possible Astronomical Causes - Comment on Mass Extinctions over the Last 500 Myr: An Astronomical Cause? (Erlykin et Al .).” Edited by Andrew Smith. Palaeontology 60 (6): 911–20. https://doi.org/10.1111/pala.12322.
  • Muscente, A. D., Anirudh Prabhu, Hao Zhong, Ahmed Eleish, Michael B. Meyer, Peter Fox, Robert M. Hazen, and Andrew H. Knoll. 2018. “Quantifying Ecological Impacts of Mass Extinctions with Network Analysis of Fossil Communities.” Proceedings of the National Academy of Sciences 115 (20): 5217–22. https://doi.org/10.1073/pnas.1719976115.
  • Nawrot, Rafał, Daniele Scarponi, Michele Azzarone, Troy A. Dexter, Kristopher M. Kusnerik, Jacalyn M. Wittmer, Alessandro Amorosi, and Michał Kowalewski. 2018. “Stratigraphic Signatures of Mass Extinctions: Ecological and Sedimentary Determinants.” Proceedings of the Royal Society B: Biological Sciences 285 (1886): 20181191. https://doi.org/10.1098/rspb.2018.1191.

Option 5 - Advanced Topics in Sedimentary Geology and Stratigraphy

This is the suggested reading list for Option 5 (2018-19), Sedimentary Geology and Stratigraphy, lectured by Neil Davies.

General Reading

  • Buatois, Luis A., and M. Gabriela Mángano. 2018. “The Other Biodiversity Record: Innovations in Animal-Substrate Interactions through Geologic Time.” GSA Today, October, 4–10. https://doi.org/10.1130/GSATG371A.1.
  • Davies, Neil S., and Anthony P. Shillito. 2018. “Incomplete but Intricately Detailed: The Inevitable Preservation of True Substrates in a Time-Deficient Stratigraphic Record.” Geology 46 (8): 679–82. https://doi.org/10.1130/G45206.1.
  • Dorgan, K. M. 2015. “The Biomechanics of Burrowing and Boring.” Journal of Experimental Biology 218 (2): 176–83. https://doi.org/10.1242/jeb.086983.
  • Dorgan, Kelly, Peter Jumars, Bruce Johnson, and Bernard Boudreau. 2006. Macrofaunal Burrowing: The Medium Is the Message. Vol. 44.
  • Furlani, Stefano, and Andrea Ninfo. 2015. “Is the Present the Key to the Future?” Earth-Science Reviews 142 (March): 38–46. https://doi.org/10.1016/j.earscirev.2014.12.005.
  • Gretener, P.E., 1967. Significance of the rare event in geology. AAPG Bulletin, 51(11), pp.2197-2206.
  • This should be available in the library, but the abstract is available online and gives you an idea of why event
  • stratigraphy is discussed.
  • Immenhauser, Adrian. 2009. “Estimating Palaeo-Water Depth from the Physical Rock Record.” Earth-Science Reviews 96 (1–2): 107–39. https://doi.org/10.1016/j.earscirev.2009.06.003.
  • *Kleinhans, Maarten G., Chris J. J. Buskes, and Henk W. de Regt. 2010. “Philosophy of Earth Science.” In Philosophies of the Sciences, edited by Fritz Allhoff, 213–36. Oxford, UK: Wiley-Blackwell. https://doi.org/10.1002/9781444315578.ch9.
  • McMahon, William J., and Davies, Neil S. 2018. “The shortage of geological evidence for pre‐vegetation meandering rivers. Fluvial Meanders and Their Sedimentary Products in the Rock Record” In: Ghinassi, M. et al. (Eds.), Fluvial Meanders and Their Sedimentary Products in the Rock Record, International Association of Sedimentologists, Special Publications, Vol. 48, Wiley, p. 119-148.
  • Miall, Andrew D. 2016. “The Valuation of Unconformities.” Earth-Science Reviews 163 (December): 22–71. https://doi.org/10.1016/j.earscirev.2016.09.011.
  • *Peters, Shanan E., and Jon M. Husson. 2017. “Sediment Cycling on Continental and Oceanic Crust.” Geology 45 (4): 323–26. https://doi.org/10.1130/G38861.1.
  • Ronov, A.B., V.E. Khain, A.N. Balukhovsky, and K.B. Seslavinsky. 1980. “Quantitative Analysis of Phanerozoic Sedimentation.” Sedimentary Geology 25 (4): 311–25. https://doi.org/10.1016/0037-0738(80)90067-6.
  • *Tipper, John C. 2015. “The Importance of Doing Nothing: Stasis in Sedimentation Systems and Its Stratigraphic Effects.” Geological Society, London, Special Publications 404 (1): 105–22. https://doi.org/10.1144/SP404.6.
  • Van Wagoner, J. C., D. C. J. D. Hoyal, N. L. Adair, T. Sun, R. T. Beaubouef, M. Deffenbaugh, P. A. Dunn, C. Huh, and D. Li. 2003. “Energy Dissipation and the Fundamental Shape of Siliciclastic Sedimentary Bodies.” Search and Discovery Article #40080.
  • Veizer, J., and F.T. Mackenzie. 2014. “Evolution of Sedimentary Rocks.” In Treatise on Geochemistry, 399–435. Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00715-4.

Short Presentations

  1. Wizevich, M.C., Ahern, J. and Meyer, C.A., 2019. The Triassic of southwestern Switzerland–Marine or non-marine, that is the question!. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, pp.577-592. 
  2. Baker, V.R., Hamilton, C.W., Burr, D.M., Gulick, V.C., Komatsu, G., Luo, W., Rice Jr, J.W. and Rodriguez, J.A.P., 2015. Fluvial geomorphology on Earth-like planetary surfaces: a review. Geomorphology, 245, pp.149-182. 
  3. Marenco, K.N. and Hagadorn, J.W., 2019. Big bedding planes: Outcrop size and spatial heterogeneity influence trace fossil analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 513, pp.14-24. 
  4. Kemp, D.B., Eichenseer, K. and Kiessling, W., 2015. Maximum rates of climate change are systematically underestimated in the geological record. Nature communications, 6, p.8890. AND Kemp, D.B. and Sexton, P.F., 2014. Time-scale uncertainty of abrupt events in the geologic record arising from unsteady sedimentation. Geology, 42(10), pp.891-894.
  5. Perron, J.T., 2017. Climate and the pace of erosional landscape evolution. Annual Review of Earth and Planetary Sciences, 45, pp.561-591. 
  6. Gani, M.R., 2017. Mismatch Between Time Surface and Stratal Surface in Stratigraphy. Journal of Sedimentary Research, 87(11), pp.1226-1234. 
  7. Retallack, G.J., 2019. Interflag sandstone laminae, a novel sedimentary structure, with implications for Ediacaran paleoenvironments. Sedimentary Geology, 379, pp.60-76.
  8. Kocurek, G. and Day, M., 2018. What is preserved in the aeolian rock record? A Jurassic Entrada Sandstone case study at the Utah–Arizona border. Sedimentology, 65(4), pp.1301-1321.
  9. Nyberg, B. and Howell, J.A., 2015. Is the present the key to the past? A global characterization of modern sedimentary basins. Geology, 43(7), pp.643-646.
  10. Antonelli, A., Kissling, W.D., Flantua, S.G., Bermúdez, M.A., Mulch, A., Muellner-Riehl, A.N., Kreft, H., Linder, H.P., Badgley, C., Fjeldså, J. and Fritz, S.A., 2018. Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11(10), p.718.
  11. Tarhan, L.G., 2018. Phanerozoic shallow marine sole marks and substrate evolution. Geology, 46(9), pp.755-758. AND Herringshaw, L.G., Callow, R.H. and McIlroy, D., 2017. Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers. Geological Society, London, Special Publications, 448, 369-382.
  12. Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E.C., Ellis, M. and Jeandel, C., 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269), p. 2622.

 

Seminars

 

A

  • *Paola, C., Ganti, V., Mohrig, D., Runkel, A.C. and Straub, K.M., 2018. Time not our time: Physical controls on the preservation and measurement of geologic time. Annual Review of Earth and Planetary Sciences, 46, pp.409-438.
  • Ager, D.V., 1995. The new catastrophism: the importance of the rare event in geological history. Cambridge University Press. This short book is in the library.
  • *Sadler, P.M., 1981. Sediment accumulation rates and the completeness of stratigraphic sections. The Journal of Geology, 89(5), pp.569-584.
  • Dott, R.H., 1983. Episodic sedimentation; how normal is average? How rare is rare? Does it matter?. Journal of Sedimentary Research, 53(1), pp.5-23.

 

B

  • Tipper, J.C., 2016. Measured rates of sedimentation: What exactly are we estimating, and why? Sedimentary geology, 339, pp.151-171.
  • *Miall, A.D., 2014. Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents’. Geological Society, London, Special Publications, 404, pp.404-4.
  • Runkel, A.C., Miller, J.F., McKay, R.M., Palmer, A.R. and Taylor, J.F., 2008, The record of time in cratonic interior strata: does exceptionally slow subsidence necessarily result in exceptionally poor stratigraphic completeness? Geological Association of Canada Special Paper, v. 48, p. 341-362. This paper is in a book in the library.
  • Archer, A.W., Elrick, S., Nelson, W.J. and Dimichele, W.A., 2016, March. Cataclysmic burial of Pennsylvanian Period coal swamps in the Illinois Basin: Hypertidal sedimentation during Gondwanan glacial melt-water pulses. In Contributions to Modern and Ancient Tidal Sedimentology: Proceedings of the Tidalites 2012 Conference: International Association of Sedimentologists Special Publication (Vol. 47, pp. 217-231).

 

C

  • *Dietrich, W.E. and Perron, J.T., 2006. The search for a topographic signature of life. Nature, 439(7075), p.411.
  • Phillips, J.D., 2016. Landforms as extended composite phenotypes. Earth Surface Processes and Landforms, 41(1), pp.16-26.
  • Beerling, D.J. and Butterfield, N.J., 2012. Plants and Animals as Geobiological Agents. Fundamentals of Geobiology, 188-204.
  • Jones, C.G., Lawton, J.H. and Shachak, M., 1994. Organisms as ecosystem engineers. In Ecosystem management (pp. 130-147). Springer, New York, NY.
  • Trimble, S.W. and Mendel, A.C., 1995. The cow as a geomorphic agent—a critical review. Geomorphology, 13(1-4), pp.233-253. If cows can influence geomorphology, did dinosaurs leave a similar signature in Mesozoic strata? (There is a second paper on Moodle that has a couple of relevant paragraphs on this: Shillito & Davies 2019, Section 4.3).

 

D

  • McMahon, S., Bosak, T., Grotzinger, J.P., Milliken, R.E., Summons, R.E., Daye, M., Newman, S.A., Fraeman, A., Williford, K.H. and Briggs, D.E.G., 2018. A Field Guide to Finding Fossils on Mars. Journal of Geophysical Research: Planets.
  • McLennan, S.M., Grotzinger, J.P., Hurowitz, J.A. and Tosca, N.J., 2019. The sedimentary cycle on Early Mars. Annual Review of Earth and Planetary Sciences.
  • Grotzinger, J.P., Hayes, A.G., Lamb, M.P. and McLennan, S.M., 2013. Sedimentary processes on Earth,
  • Mars, Titan, and Venus. Comparative Climatology of Terrestrial Planets, 1, pp.439-472.
  • Baucon, A., De Carvalho, C.N., Barbieri, R., Bernardini, F., Cavalazzi, B., Celani, A., Felletti, F., Ferretti, A., Schönlaub, H.P., Todaro, A. and Tuniz, C., 2017. Organism-substrate interactions and astrobiology: Potential, models and methods. Earth-science reviews, 171, pp.141-180.
  • Davies, N.S., Liu, A.G., Gibling, M.R. and Miller, R.F., 2018. Reply to comment on the paper by Davies et al. “Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes” (Earth Science Reviews, 154 (2016), 210–246). Earth-Science Reviews, 176, 384-386.

 

E

  • Allen, P.A., 2008. From landscapes into geological history. Nature, 451(7176), p.274.
  • *Hajek, E.A. and Straub, K.M., 2017. Autogenic sedimentation in clastic stratigraphy. Annual Review of Earth and Planetary Sciences, 45, pp.681-709.
  • Romans, B.W., Castelltort, S., Covault, J.A., Fildani, A. and Walsh, J.P., 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153, pp.7-29.
  • Jerolmack, D.J. and Paola, C., 2010. Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19).

 

F

  • Husson, J.M. and Peters, S.E., 2018. Nature of the sedimentary rock record and its implications for Earth system evolution. Emerging Topics in Life Sciences, 2, 125-136.
  • Cawood, P.A., Hawkesworth, C.J. and Dhuime, B., 2013. The continental record and the generation of continental crust. Bulletin, 125(1-2), pp.14-32.
  • Holland, S.M., 2016. The non-uniformity of fossil preservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1699), p.20150130.
  • Keller, C.B., Husson, J.M., Mitchell, R.N., Bottke, W.F., Gernon, T.M., Boehnke, P., Bell, E.A., Swanson-Hysell, N.L. and Peters, S.E., 2019. Neoproterozoic glacial origin of the Great Unconformity. Proceedings of the National Academy of Sciences, 116(4), pp.1136-1145.
  • Smith, A.B. and McGowan, A.J., 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe?. Palaeontology, 50.

 

 

Option 6 - Evolution and Composition of the Earth's Mantle

Reading list for Part III Option 6 lectures - Evolution and Composition of the Earth's Mantle. Created 2019.

Option 6 - Sally Gibson

* = highly recommended as the most appropriate available book for O6

COURSE TEXT BOOKS

Available from the library office

  • Davies, G.F.D. 2011. Mantle convection for geologists. Cambridge University Press
  • Dickin, A.P. Radiogenic Isotope Geochemistry. Cambridge University Press
  • *Gill, R. 2010. Igneous rocks & processes. Wiley-Blackwell
  • *Treatise on Geochemistry 2 (2014): The mantle & core (Elsevier) - don't have this in the library
  • *Rollinson, H., 1993. Using geochemical data. Pearson
  • MacKenzie, Donaldson & Guilford, Atlas of igneous rocks and their textures.
  • Nixon, P.H., 1987. Mantle Xenoliths

Available from the library office.

  • Shaw, D.M., 2007. Trace elements in magmas: A theoretical treatment. Cambridge University Press
  • White, W.M., 2013. Geochemistry. Wiley

TEXT BOOKS FOR ALL PRACTICALS

  • *Deer Howie & Zussman,  An introduction to the rock forming minerals


Lecture 1

References


Lecture 2

 

References

  • *Demouchy, S & Bolfan Casanova, N. (2016). Distribution and Transport of Hydrogen in the Lithospheric Mantle: A Review. Lithos 240, 402-425.
  • *Doucet et al., (2014). High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochimica Cosmochimica Acta 137, 159-187.
  • Jean, M. M., Taylor, L. A., Howarth, G. H. , Peslier, A. H. , Fedele, L., Bodnar, R. J., Guan, Y., Doucet, L. S., Ionov, D. A. , Logvinova, A. M., Golovin, A. V., Sobolev, N. V. (2016) Olivine inclusions in Siberian diamonds and mantle xenoliths: Contrasting water and trace element contents. Lithos, 265, 31-41.
  • Pearson,  D.  G.  and  Wittig,  N.  (2014).  The  formation  and  evolution  of  the  subcontinental  mantle lithosphere -evidence from mantle xenoliths. Treatise of Geochemistry, Volume 3: The Mantle and Core, Chapter 3.6, 255–292.
  • *Peslier, A.H., Woodland, A.B., Bell, D.R. & Lazarov, M., 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78-81.

 

Lecture 3

References

  • Arndt, N.T., Guitreau, M., Bouiller, A.M., Le Roex, A. Tommasi, A. Cordier, P. Sobolev, A. 2010. Olivine, and the origin of kimberlite. J Petrology 51, 573-602.
  • Brett, R.C., Russell, J.K., Moss, S., 2009. Origin of olivine in kimberlite: phenocryst or impostor? Lithos, 112, 201-212.
  • Bussweiler, Y, Foley, S.F., PrevelicD., & Jacob, D.E., 2015. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220-223, 238-252.
  • Dawson, J. B., 1994. Quaternary kimberlitic volcanism on the Tanzania Craton. Contributions to Mineralogy and Petrology, 116(4), 473.
  • Giuliani, A., 2018. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 312-313, 322- 342.

 

Lecture 4

References

  • Brey, G., Bulatov, VK, Girnis, AV., Lahaye, Y., 2008. Experimental Melting of Carbonated Peridotite at 6–10 GPa. Journal of Petrology 49, 797.
  • *Gudfinnson GH and Presnall DC. (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilitic, basaltic, picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. Journal of Petrology 46, 81646–1659.
  • McKenzie, D.P., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet. Sci. Lett. 95, 53-72.
  • *Pearson, G.D., 2014. F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans & L. Vincze. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224.
  • *Tachibana, Y., Kaneoka, I., Gaffney, A. & Upton, B. (2006). Ocean island basalt-like source of kimberlite magmas from West Greenland revealed by high 3 He/4 He ratios. Geology 34, 273-276.

 

Lecture 5

References

  • Carbonatites, 1989. (ed. K.Bell), Unwin Hyman, 618 pp
  • *Dawson, J.B., Pinkerton, H., Pyle, D.M. & Nyamweru, C., 1994. June 1993 eruption of Oldoinyo Lengai, Tanzania: exceptionally viscous and large carbonatite lava flows and evidence for coexisting silicate and carbonate magmas. Geology 22, 799-802.
  • Bailey, D.K., 1993. Carbonatite magmas. J. Geol. Soc. Lond. 150, 637-651
  • Bell, K. & Tilton, G.R. 2001. Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity. J. Petrology 42: 1927-1945.
  • *Jones, A.P., Genge, M., & Carmody, L., 2013. Carbonate melts and carbonatites. www.minsocam.org/msa/rim/RiMG075/RiMG075_Ch10_novideo.pdf
  • Mitchell, R. & Dawson, J.B., 2008. The 24th September 2007 ash eruption of the carbonatite volcano Oldoinyo Lengai, Tanzania: mineralogy of the ash and implications for formation of a new hybrid magma type. Mineralogical Magazine 71, 483-492
  • J. Petrology 1998, volume 39 no.s 11 to 12: special volume on carbonatites for the enthusiasts!

 

Lecture 6

References

  • Dalton, J.A. & Wood, B.J., 1993. The composition of primary carbonate melts and their evolution through wall rock reaction in the mantle. Earth Planet Sci. Lett 119, 511-525.
  • *Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M. & Withers, A.C. (2009). Trace element partitioning between garnet lherzolite and carbonatite at 6.6. and 8.6 GPa with applications to the geochemistry of the mantle and of mantlederived melts. Chemical geology 262, 57-77.
  • *Green, D.H. & Wallace, M.F., 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature 356, 459-462.
  • Hoernle K., Tilton, G., Le Bas, M.J., Duggen, S & Garbe-Schonberg, D., 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol. 142, 520-542.
  • *Kelemen, P.D. & Manning, C.E. (2015). Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. www.pnas.org/cgi/doi/10.1073/pnas.1507889112
  • Kjarsgaard B., 1998. Phase relations of a carbonated high-CaO nephelinite at 0·2 and 0·5 GPa J. Petrology 39, 2061-2075
  • Kjarsgaard B. & Hamilton, 1989. Genesis of carbonatites by Immiscibility. In: Carbonatites (ed Bell), 388-404.
  • Veksler, I.V., Nielsen, T.F.D. & Sokolov, S.V., 1998. Mineralogy of crystallised melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J. Petrology 39, 2015-2031.
  • *Wallace, M.F. & Green, D.H., 1988. An experimental determination of primary carbonatite magma composition. Nature 335, 343-346.

 

Lecture 7

References

  • Dasgupta, R.D., Mallik, A., Tsuno, K., Withers, A., Hirth, G. & Hirschmann, M.M., 2013. Carbon dioxide rich silicate melt in the Earth’s upper mantle. Doi:10.1038/nature11731
  • *Dasgupta, R.D. & Hirschman, M.M., 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Science Letters 298, 1-13.
  • Gibson, S.A. & Richards, M.A., 2018. Delivery of deep-sourced, volatile-rich plume material to the global ridge system. Earth Planet Science Letters 499, 205-218.
  • Mata, J., Moreira, M., Doucelance, R., Ader, M. & Silva, L.C., 2010. Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance. Earth Planet Science Letters 291, 70-83
  • Miller, W.G.R., Holland, T.J.B. & Gibson, S.A., 2016. Garnet and spinel oxybarometers: New internally consistent multi-equilibria models with applications to the oxidation state of the lithospheric mantle. J. Petrology 57, 1199-1222.
  • *Stagno, V., Ojwang, D., McCammon, C.A. & frost, D.J., 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84-88.

Option 7 - Volcanology

This is a list of key papers for the 2018-19 volcanology course (lectured by Andy Woods and Marie Edmonds).

Andy Woods (processes)

  • Barmin, A., O. Melnik, and R.S.J. Sparks. “Periodic Behavior in Lava Dome Eruptions.” Earth and Planetary Science Letters 199, no. 1–2 (May 2002): 173–84. https://doi.org/10.1016/S0012-821X(02)00557-5.
  • Branney, Michael J., and Peter Kokelaar. Pyroclastic Density Currents and the Sedimentation of Ignimbrites. Geological Society of London, 2002. https://doi.org/10.1144/GSL.MEM.2003.027.
  • Burgisser, Alain, and George W. Bergantz. “A Rapid Mechanism to Remobilize and Homogenize Highly Crystalline Magma Bodies.” Nature 471, no. 7337 (March 2011): 212–15. https://doi.org/10.1038/nature09799.
  • Bursik, Marcus I., and Andrew W. Woods. “The Dynamics and Thermodynamics of Large Ash Flows.” Bulletin of Volcanology 58, no. 2–3 (September 1996): 175–93. https://doi.org/10.1007/s004450050134.
  • Druitt, T. H., E. S. Calder, P. D. Cole, R. P. Hoblitt, S. C. Loughlin, G. E. Norton, L. J. Ritchie, R. S. J. Sparks, and B. Voight. “Small-Volume, Highly Mobile Pyroclastic Flows Formed by Rapid Sedimentation from Pyroclastic Surges at Soufrière Hills Volcano, Montserrat: An Important Volcanic Hazard.” Geological Society, London, Memoirs 21, no. 1 (2002): 263–79. https://doi.org/10.1144/GSL.MEM.2002.021.01.12.
  • Edmonds, M., C. Oppenheimer, D.M. Pyle, R.A. Herd, and G. Thompson. “SO2 Emissions from Soufrière Hills Volcano and Their Relationship to Conduit Permeability, Hydrothermal Interaction and Degassing Regime.” Journal of Volcanology and Geothermal Research 124, no. 1–2 (May 2003): 23–43. https://doi.org/10.1016/S0377-0273(03)00041-6.
  • Vidal, Céline M., Nicole Métrich, Jean-Christophe Komorowski, Indyo Pratomo, Agnès Michel, Nugraha Kartadinata, Vincent Robert, and Franck Lavigne. “The 1257 Samalas Eruption (Lombok, Indonesia): The Single Greatest Stratospheric Gas Release of the Common Era.” Scientific Reports 6 (October 10, 2016): 34868.
  • Foroozan, Roozbeh, Derek Elsworth, Barry Voight, and Glen S. Mattioli. “Magmatic-Metering Controls the Stopping and Restarting of Eruptions: STOPPING AND RESTARTING OF ERUPTIONS.” Geophysical Research Letters 38, no. 5 (March 16, 2011) https://doi.org/10.1029/2010GL046591.
  • Hoover, S.R, K.V Cashman, and M Manga. “The Yield Strength of Subliquidus Basalts — Experimental Results.” Journal of Volcanology and Geothermal Research 107, no. 1–3 (June 2001): 1–18. https://doi.org/10.1016/S0377-0273(00)00317-6.
  • Huppert, H. E., and R. S. J. Sparks. “The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust.” Journal of Petrology 29, no. 3 (June 1, 1988): 599–624. https://doi.org/10.1093/petrology/29.3.599.
  • Huppert, Herbert E., R. Stephen J. Sparks, and J. Stewart Turner. “Effects of Volatiles on Mixing in Calc-Alkaline Magma Systems.” Nature 297, no. 5867 (June 1, 1982): 554–57. https://doi.org/10.1038/297554a0.
  • Huppert, Herbert E., and Andrew W. Woods. “The Role of Volatiles in Magma Chamber Dynamics.” Nature 420, no. 6915 (December 2002): 493–95. https://doi.org/10.1038/nature01211.
  • Lavigne, F., J.-P. Degeai, J.-C. Komorowski, S. Guillet, V. Robert, P. Lahitte, C. Oppenheimer, et al. “Source of the Great A.D. 1257 Mystery Eruption Unveiled, Samalas Volcano, Rinjani Volcanic Complex, Indonesia.” Proceedings of the National Academy of Sciences 110, no. 42 (October 15, 2013): 16742–47. https://doi.org/10.1073/pnas.1307520110.
  • Melnik, O., and R. S. J. Sparks. “Nonlinear Dynamics of Lava Dome Extrusion.” Nature 402, no. 6757 (November 1, 1999): 37–41. https://doi.org/10.1038/46950.
  • Peters, Nial, Clive Oppenheimer, Drea Rae Killingsworth, Jed Frechette, and Philip Kyle. “Correlation of Cycles in Lava Lake Motion and Degassing at Erebus Volcano, Antarctica.” Geochemistry, Geophysics, Geosystems 15, no. 8 (August 2014): 3244–57. https://doi.org/10.1002/2014GC005399.
  • Phillips, Jeremy C., and Andrew W. Woods. “Suppression of Large-Scale Magma Mixing by Melt–volatile Separation.” Earth and Planetary Science Letters 204, no. 1–2 (November 2002): 47–60. https://doi.org/10.1016/S0012-821X(02)00978-0.
  • Sher, Diana, and Andrew W. Woods. “Experiments on Mixing in Pyroclastic Density Currents Generated from Short-Lived Volcanic Explosions.” Earth and Planetary Science Letters 467 (June 2017): 138–48. https://doi.org/10.1016/j.epsl.2017.03.009.
  • Stasiuk, Mark V., Claude Jaupart, and R. Stephen J. Sparks. “On the Variations of Flow Rate in Non-Explosive Lava Eruptions.” Earth and Planetary Science Letters 114, no. 4 (February 1993): 505–16. https://doi.org/10.1016/0012-821X(93)90079-O.
  • Tait, Stephen, Claude Jaupart, and Sylvie Vergniolle. “Pressure, Gas Content and Eruption Periodicity of a Shallow, Crystallising Magma Chamber.” Earth and Planetary Science Letters 92, no. 1 (February 1989): 107–23. https://doi.org/10.1016/0012-821X(89)90025-3.
  • Tarasewicz, Jon, Robert S. White, Andrew W. Woods, Bryndís Brandsdóttir, and Magnús T. Gudmundsson. “Magma Mobilization by Downward-Propagating Decompression of the Eyjafjallajökull Volcanic Plumbing System: MAGMA MOBILIZATION BY DECOMPRESSION.” Geophysical Research Letters 39, no. 19 (October 16, 2012): n/a-n/a. https://doi.org/10.1029/2012GL053518.
  • Vidal, Céline M., Nicole Métrich, Jean-Christophe Komorowski, Indyo Pratomo, Agnès Michel, Nugraha Kartadinata, Vincent Robert, and Franck Lavigne. “The 1257 Samalas Eruption (Lombok, Indonesia): The Single Greatest Stratospheric Gas Release of the Common Era.” Scientific Reports 6 (October 10, 2016): 34868.
  • Woodhouse, M. J., A. J. Hogg, J. C. Phillips, and R. S. J. Sparks. “Interaction between Volcanic Plumes and Wind during the 2010 Eyjafjallajökull Eruption, Iceland: VOLCANIC PLUMES AND WIND.” Journal of Geophysical Research: Solid Earth 118, no. 1 (January 2013): 92–109. https://doi.org/10.1029/2012JB009592.
  • Woods, A. W. “The Fluid Dynamics and Thermodynamics of Eruption Columns.” Bulletin of Volcanology 50, no. 3 (June 1988): 169–93. https://doi.org/10.1007/BF01079681.
  • Woods, Andrew W. “The Dynamics of Explosive Volcanic Eruptions.” Reviews of Geophysics 33, no. 4 (1995): 495. https://doi.org/10.1029/95RG02096.
  • Woods, Andrew W., and Alexander Cowan. “Magma Mixing Triggered during Volcanic Eruptions.” Earth and Planetary Science Letters 288, no. 1–2 (October 30, 2009): 132–37. https://doi.org/10.1016/j.epsl.2009.09.015.
  • Woods, Andy. “Volcanic Flows.” In Buoyancy-Driven Flows, edited by Eric Chassignet, Claudia Cenedese, and Jacques Verron, 338–71. Cambridge: Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511920196.010.

 

Marie Edmonds (examples)

Kīlauea

  • Brooks, B, J Foster, M Bevis, L Frazer, C Wolfe, and M Behn. 2006. 'Periodic Slow Earthquakes on the Flank of Kīlauea Volcano, Hawaiʻi'. Earth and Planetary Science Letters 246 (3–4): 207–16. https://doi.org/10.1016/j.epsl.2006.03.035.
  • Cashman, Katharine V., Carl Thornber, and James P. Kauahikaua. 1999. 'Cooling and Crystallization of Lava in Open Channels, and the Transition of Pāhoehoe Lava to 'A'ā'. Bulletin of Volcanology 61 (5): 306–23. https://doi.org/10.1007/s004450050299.
  • Courtillot, Vincent, Anne Davaille, Jean Besse, and Joann Stock. 2003. 'Three Distinct Types of Hotspots in the Earth's Mantle'. Earth and Planetary Science Letters 205 (3–4): 295–308. https://doi.org/10.1016/S0012-821X(02)01048-8.
  • Edmonds, M., I.R. Sides, D.A. Swanson, C. Werner, R.S. Martin, T.A. Mather, R.A. Herd, et al. 2013. 'Magma Storage, Transport and Degassing during the 2008–10 Summit Eruption at Kīlauea Volcano, Hawai'i'. Geochimica et Cosmochimica Acta 123 (December): 284–301. https://doi.org/10.1016/j.gca.2013.05.038.
  • Fiske, R. S., and E. D. Jackson. 1972. 'Orientation and Growth of Hawaiian Volcanic Rifts: The Effect of Regional Structure and Gravitational Stresses'. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 329 (1578): 299–326.
  • Grigg, Richard W., and Anthony T. Jones. 1997. 'Uplift Caused by Lithospheric Flexure in the Hawaiian Archipelago as Revealed by Elevated Coral Deposits'. Marine Geology 141 (1–4): 11–25. https://doi.org/10.1016/S0025-3227(97)00069-8.
  • Hauri, Erik H. 1996. 'Major-Element Variability in the Hawaiian Mantle Plume'. Nature 382 (6590): 415–19. https://doi.org/10.1038/382415a0.
  • Morgan, Julia K., Gregory F. Moore, and David A. Clague. 2003. 'Slope Failure and Volcanic Spreading along the Submarine South Flank of Kilauea Volcano, Hawaii'. Journal of Geophysical Research: Solid Earth 108 (B9). https://doi.org/10.1029/2003JB002411.
  • Park, Jaewoo, Julia K. Morgan, Colin A. Zelt, and Paul G. Okubo. 2009. 'Volcano-Tectonic Implications of 3-D Velocity Structures Derived from Joint Active and Passive Source Tomography of the Island of Hawaii'. Journal of Geophysical Research: Solid Earth 114 (B9). https://doi.org/10.1029/2008JB005929.
  • Pietruszka, Aaron J, and Michael O Garcia. 1999. 'A Rapid Fluctuation in the Mantle Source and Melting History of Kilauea Volcano Inferred from the Geochemistry of Its Historical Summit Lavas (1790–1982)' 40 (8): 22.
  • Poland, Michael P., Asta Miklius, A. Jeff Sutton, and Carl R. Thornber. 2012. 'A Mantle-Driven Surge in Magma Supply to Kīlauea Volcano during 2003–2007'. Nature Geoscience 5 (March): 295.
  • Ribe, N.M, and U.R Christensen. 1999. 'The Dynamical Origin of Hawaiian Volcanism'. Earth and Planetary Science Letters 171 (4): 517–31. https://doi.org/10.1016/S0012-821X(99)00179-X.
  • Sides, I., M. Edmonds, J. Maclennan, B.F. Houghton, D.A. Swanson, and M.J. Steele-MacInnis. 2014. 'Magma Mixing and High Fountaining during the 1959 Kīlauea Iki Eruption, Hawai'i'. Earth and Planetary Science Letters 400 (August): 102–12. https://doi.org/10.1016/j.epsl.2014.05.024.
  • Swanson, Donald A. 2008. 'Hawaiian Oral Tradition Describes 400 Years of Volcanic Activity at Kīlauea'. Journal of Volcanology and Geothermal Research 176 (3): 427–31. https://doi.org/10.1016/j.jvolgeores.2008.01.033.
  • Swanson, Donald A., and Robert L. Christiansen. 1973. 'Tragic Base Surge in 1790 at Kilauea Volcano'. Geology 1 (2): 83. https://doi.org/10.1130/0091-7613(1973)1<83:TBSIAK>2.0.CO;2.
  • Watson, S., and D. P. McKenzie. 1991. 'Melt Generation by Plumes: A Study of Hawaiian Volcanism'. Journal of Petrology 32 (3): 501–37. https://doi.org/10.1093/petrology/32.3.501.
  • Watts, A. B. 1978. 'An Analysis of Isostasy in the World's Oceans 1. Hawaiian-Emperor Seamount Chain'. Journal of Geophysical Research: Solid Earth 83 (B12): 5989–6004. https://doi.org/10.1029/JB083iB12p05989.
  • Weis, Dominique, Michael O. Garcia, J. Michael Rhodes, Mark Jellinek, and James S. Scoates. 2011. 'Role of the Deep Mantle in Generating the Compositional Asymmetry of the Hawaiian Mantle Plume'. Nature Geoscience 4 (12): 831–38. https://doi.org/10.1038/ngeo1328.
  • Wolfe, C. J., S. C. Solomon, G. Laske, J. A. Collins, R. S. Detrick, J. A. Orcutt, D. Bercovici, and E. H. Hauri. 2009. 'Mantle Shear-Wave Velocity Structure Beneath the Hawaiian Hot Spot'. Science 326 (5958): 1388–90. https://doi.org/10.1126/science.1180165.
  • Wright, Thomas L., and Fred W. Klein. 2006. 'Deep Magma Transport at Kilauea Volcano, Hawaii'. Lithos 87 (1–2): 50–79. https://doi.org/10.1016/j.lithos.2005.05.004.

 

Soufrière Hills Volcano, Montserrat

  • Calder, E. S., P. D. Cole, W. B. Dade, T. H. Druitt, R. P. Hoblitt, H. E. Huppert, L. Ritchie, R. S. J. Sparks, and S. R. Young. 1999. 'Mobility of Pyroclastic Flows and Surges at the Soufriere Hills Volcano, Montserrat'. Geophysical Research Letters 26 (5): 537–40. https://doi.org/10.1029/1999GL900051.
  • Caricchi, L, L Burlini, P Ulmer, T Gerya, M Vassalli, and P Papale. 2007. 'Non-Newtonian Rheology of Crystal-Bearing Magmas and Implications for Magma Ascent Dynamics'. Earth and Planetary Science Letters 264 (3–4): 402–19. https://doi.org/10.1016/j.epsl.2007.09.032.
  • Cashman, Katharine V., and Marie Edmonds. 2019. 'Mafic Glass Compositions: A Record of Magma Storage Conditions, Mixing and Ascent'. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377 (2139): 20180004. https://doi.org/10.1098/rsta.2018.0004.
  • Cashman, Katharine V., and R. Stephen J. Sparks. 2013. 'How Volcanoes Work: A 25 Year Perspective'. GSA Bulletin 125 (5–6): 664–90. https://doi.org/10.1130/B30720.1.
  • Christopher, Thomas, Marie Edmonds, Madeleine C. S. Humphreys, and Richard A. Herd. 2010. 'Volcanic Gas Emissions from Soufrière Hills Volcano, Montserrat 1995-2009, with Implications for Mafic Magma Supply and Degassing: VOLCANIC GASES FROM SOUFRIÈRE HILLS'. Geophysical Research Letters 37 (19) https://doi.org/10.1029/2009GL041325.
  • Cooper, Kari M., and Adam J. R. Kent. 2014. 'Rapid Remobilization of Magmatic Crystals Kept in Cold Storage'. Nature 506 (7489): 480–83. https://doi.org/10.1038/nature12991.
  • Edmonds, Marie, and Richard A Herd. 2005. 'Inland-Directed Base Surge Generated by the Explosive Interaction of Pyroclastic Flows and Seawater at Soufrière Hills Volcano, Montserrat'. Geology 33 (4): 245. https://doi.org/10.1130/G21166.1.
  • Giachetti, T., T.H. Druitt, A. Burgisser, L. Arbaret, and C. Galven. 2010. 'Bubble Nucleation, Growth and Coalescence during the 1997 Vulcanian Explosions of Soufrière Hills Volcano, Montserrat'. Journal of Volcanology and Geothermal Research 193 (3–4): 215–31. https://doi.org/10.1016/j.jvolgeores.2010.04.001.
  • Green, David N., and Jürgen Neuberg. 2006. 'Waveform Classification of Volcanic Low-Frequency Earthquake Swarms and Its Implication at Soufrière Hills Volcano, Montserrat'. Journal of Volcanology and Geothermal Research 153 (1–2): 51–63. https://doi.org/10.1016/j.jvolgeores.2005.08.003.
  • Horwell, Claire J., Ben J. Williamson, Edward W. Llewellin, David E. Damby, and Jennifer S. Le Blond. 2013. 'The Nature and Formation of Cristobalite at the Soufrière Hills Volcano, Montserrat: Implications for the Petrology and Stability of Silicic Lava Domes'. Bulletin of Volcanology 75 (3). https://doi.org/10.1007/s00445-013-0696-3.
  • Humphreys, Madeleine C. S., Thomas Christopher, and Vicky Hards. 2009. 'Microlite Transfer by Disaggregation of Mafic Inclusions Following Magma Mixing at Soufrière Hills Volcano, Montserrat'. Contributions to Mineralogy and Petrology 157 (5): 609–24. https://doi.org/10.1007/s00410-008-0356-3.
  • Le Friant, A., E.J. Lock, M.B. Hart, G. Boudon, R.S.J. Sparks, M.J. Leng, C.W. Smart, J.C. Komorowski, C. Deplus, and J.K. Fisher. 2008. 'Late Pleistocene Tephrochronology of Marine Sediments Adjacent to Montserrat, Lesser Antilles Volcanic Arc'. Journal of the Geological Society 165 (1): 279–89. https://doi.org/10.1144/0016-76492007-019.
  • Lejeune, Anne-Marie, and Pascal Richet. 1995. 'Rheology of Crystal-Bearing Silicate Melts: An Experimental Study at High Viscosities'. Journal of Geophysical Research: Solid Earth 100 (B3): 4215–29. https://doi.org/10.1029/94JB02985.
  • Plail, Melissa, Marie Edmonds, Andrew W. Woods, Jenni Barclay, Madeleine C. S. Humphreys, Richard A. Herd, and Thomas Christopher. 2018. 'Mafic Enclaves Record Syn-Eruptive Basalt Intrusion and Mixing'. Earth and Planetary Science Letters 484 (February): 30–40. https://doi.org/10.1016/j.epsl.2017.11.033.
  • Sparks, R. S. J., and S. R. Young. 2002. 'The Eruption of Soufrière Hills Volcano, Montserrat (1995–1999): Overview of Scientific Results'. In The Eruption of Soufrière Hills Volcano, Montserrat from 1995 to 1999, edited by T. H. Druitt and B. P. Kokelaar, 21:0. Geological Society of London. https://doi.org/10.1144/GSL.MEM.2002.021.01.03.
  • Trofimovs, Jessica, R. Stephen John Sparks, and Peter J. Talling. 2008. 'Anatomy of a Submarine Pyroclastic Flow and Associated Turbidity Current: July 2003 Dome Collapse, Soufrière Hills Volcano, Montserrat, West Indies'. Sedimentology 55 (3): 617–34. https://doi.org/10.1111/j.1365-3091.2007.00914.x.
  • Wadge, G., and W. P. Aspinall. 2014. 'Chapter 24 A Review of Volcanic Hazard and Risk-Assessment Praxis at the Soufrière Hills Volcano, Montserrat from 1997 to 2011'. Geological Society, London, Memoirs 39 (1): 439–56. https://doi.org/10.1144/M39.24.
  • Watts, R. B., R. A. Herd, R. S. J. Sparks, and S. R. Young. 2002. 'Growth Patterns and Emplacement of the Andesitic Lava Dome at Soufrière Hills Volcano, Montserrat'. Geological Society, London, Memoirs 21 (1): 115–52. https://doi.org/10.1144/GSL.MEM.2002.021.01.06.
  • Zimmer, Mindy M., Terry Plank, Erik H. Hauri, Gene M. Yogodzinski, Peter Stelling, Jessica Larsen, Brad Singer, Brian Jicha, Charles Mandeville, and Christopher J. Nye. 2010. 'The Role of Water in Generating the Calc-Alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index'. Journal of Petrology 51 (12): 2411–44. https://doi.org/10.1093/petrology/egq062.

 

Mount St Helens

  • Cashman, Katharine V., and Joseph E. Taggart. 1983. 'Petrologic Monitoring of 1981 and 1982 Eruptive Products from Mount St. Helens'. Science 221: 1385–87. https://doi.org/10.1126/science.221.4618.1385.
  • Claiborne, Lily L., Calvin F. Miller, Daniel M. Flanagan, Michael A. Clynne, and Joseph L. Wooden. 2010. 'Zircon Reveals Protracted Magma Storage and Recycling beneath Mount St. Helens'. Geology 38 (11): 1011–14. https://doi.org/10.1130/G31285.1.
  • Druitt, T H. 1992. 'Emplacement of the 18 May 1980 Lateral Blast Deposit ENE of Mount St. Helens, Washington'. Bulletin of Volcanology 54 (7): 554–72. https://doi.org/10.1007/BF00569940.
  • Iverson, Richard M., Daniel Dzurisin, Cynthia A. Gardner, Terrence M. Gerlach, Richard G. LaHusen, Michael Lisowski, Jon J. Major, et al. 2006. 'Dynamics of Seismogenic Volcanic Extrusion at Mount St Helens in 2004–05'. Nature 444 (7118): 439–43. https://doi.org/10.1038/nature05322.
  • Salzer, Jacqueline T., Weston A. Thelen, Mike R. James, Thomas R. Walter, Seth Moran, and Roger Denlinger. 2016. 'Volcano Dome Dynamics at Mount St. Helens: Deformation and Intermittent Subsidence Monitored by Seismicity and Camera Imagery Pixel Offsets'. Journal of Geophysical Research: Solid Earth 121 (11): 7882–7902. https://doi.org/10.1002/2016JB013045.
  • Sparks, R. S. J. 1986. 'The Dimensions and Dynamics of Volcanic Eruption Columns'. Bulletin of Volcanology 48 (1): 3–15. https://doi.org/10.1007/BF01073509.
  • Sparks, R. S. J., J. G. Moore, and C. J. Rice. 1986. 'The Initial Giant Umbrella Cloud of the May 18th, 1980, Explosive Eruption of Mount St. Helens - ScienceDirect'. https://www.sciencedirect.com/science/article/pii/0377027386900260.
  • Swanson, D.A., T.J. Casadevall, D. Dzurisin, R.T. Holcomb, C.G. Newhall, S.D. Malone, and C.S. Weaver. 1985. 'Forecasts and Predictions of Eruptive Activity at Mount St. Helens, USA: 1975–1984'. Journal of Geodynamics 3 (3–4): 397–423. https://doi.org/10.1016/0264-3707(85)90044-4.
  • Waite, Gregory P., Bernard A. Chouet, and Phillip B. Dawson. 2008. 'Eruption Dynamics at Mount St. Helens Imaged from Broadband Seismic Waveforms: Interaction of the Shallow Magmatic and Hydrothermal Systems'. Journal of Geophysical Research 113 (B2). https://doi.org/10.1029/2007JB005259.

 

Laki

  • Reynolds, P., R. J. Brown, T. Thordarson, and E. W. Llewellin. 2016. 'The Architecture and Shallow Conduits of Laki-Type Pyroclastic Cones: Insights into a Basaltic Fissure Eruption'. Bulletin of Volcanology 78 (5). https://doi.org/10.1007/s00445-016-1029-0.
  • Schmidt, A., B. Ostro, K. S. Carslaw, M. Wilson, T. Thordarson, G. W. Mann, and A. J. Simmons. 2011. 'Excess Mortality in Europe Following a Future Laki-Style Icelandic Eruption'. Proceedings of the National Academy of Sciences 108 (38): 15710–15. https://doi.org/10.1073/pnas.1108569108.
  • Sigurdsson, Haraldur. 1982. 'Volcanic Pollution and Climate: The 1783 Laki Eruption'. Eos, Transactions American Geophysical Union 63 (32): 601. https://doi.org/10.1029/EO063i032p00601.
  • Thordarson, Thorvaldur, and S. Self. 2003. 'Atmospheric and Environmental Effects of the 1783–1784 Laki Eruption: A Review and Reassessment'. Journal of Geophysical Research 108 (D1). https://doi.org/10.1029/2001JD002042.

 

Cordón Caulle

  • Bonadonna, Costanza, Raffaello Cioni, Marco Pistolesi, Manuela Elissondo, and Valerie Baumann. 2015. 'Sedimentation of Long-Lasting Wind-Affected Volcanic Plumes: The Example of the 2011 Rhyolitic Cordón Caulle Eruption, Chile'. Bulletin of Volcanology 77 (2). https://doi.org/10.1007/s00445-015-0900-8.
  • Castro, Jonathan M., Benoit Cordonnier, C. Ian Schipper, Hugh Tuffen, Tobias S. Baumann, and Yves Feisel. 2016. 'Rapid Laccolith Intrusion Driven by Explosive Volcanic Eruption'. Nature Communications 7 (November): 13585.
  • Farquharson, J.I., M.R. James, and H. Tuffen. 2015. 'Examining Rhyolite Lava Flow Dynamics through Photo-Based 3D Reconstructions of the 2011–2012 Lava Flowfield at Cordón-Caulle, Chile'. Journal of Volcanology and Geothermal Research 304 (October): 336–48. https://doi.org/10.1016/j.jvolgeores.2015.09.004.
  • Magnall, Nathan, Mike R. James, Hugh Tuffen, Charlotte Vye-Brown, C. Ian Schipper, Jonathan M. Castro, and Ashley Gerard Davies. 2019. 'The Origin and Evolution of Breakouts in a Cooling-Limited Rhyolite Lava Flow'. GSA Bulletin 131 (1–2): 137–54. https://doi.org/10.1130/B31931.1.

 

Long Valley

  • Farrar, C. D., M. L. Sorey, W. C. Evans, J. F. Howle, B. D. Kerr, B. M. Kennedy, C.-Y. King, and J. R. Southon. 1995. 'Forest-Killing Diffuse CO2 Emission at Mammoth Mountain as a Sign of Magmatic Unrest'. Nature 376 (6542): 675–78. https://doi.org/10.1038/376675a0.
  • Hildreth, Wes. 2004. 'Volcanological Perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several Contiguous but Discrete Systems'. Journal of Volcanology and Geothermal Research 136 (3–4): 169–98. https://doi.org/10.1016/j.jvolgeores.2004.05.019.
  • Hildreth, Wes, and Colin J. N. Wilson. 2007. 'Compositional Zoning of the Bishop Tuff'. Journal of Petrology 48 (5): 951–99. https://doi.org/10.1093/petrology/egm007.
  • Hill, David P. 2006. 'Unrest in Long Valley Caldera, California, 1978–2004'. Geological Society, London, Special Publications 269 (1): 1.2-24. https://doi.org/10.1144/GSL.SP.2006.269.01.02.

 

Santorini

  • Cadoux, Anita, Bruno Scaillet, Slimane Bekki, Clive Oppenheimer, and Timothy H. Druitt. 2015. 'Stratospheric Ozone Destruction by the Bronze-Age Minoan Eruption (Santorini Volcano, Greece)'. Scientific Reports 5 (July): 12243.
  • Druitt, T. H., F. Costa, E. Deloule, M. Dungan, and B. Scaillet. 2012. 'Decadal to Monthly Timescales of Magma Transfer and Reservoir Growth at a Caldera Volcano'. Nature 482 (7383): 77–80. https://doi.org/10.1038/nature10706.
  • Druitt, T. H., R. A. Mellors, D. M. Pyle, and R. S. J. Sparks. 1989. 'Explosive Volcanism on Santorini, Greece'. Geological Magazine 126 (2): 95–126. https://doi.org/10.1017/S0016756800006270.
  • Druitt, Th, and V Francaviglia. 1992. 'Caldera Formation on Santorini and the Physiography of the Islands in the Late Bronze Age'. Bulletin of Volcanology 54 (6): 484–93. https://doi.org/10.1007/BF00301394.

 

Option 8 - Planetary Chemistry and Evolution

This is the reading list to accompany the 2018-19 Part III course in Planetary Chemistry. It is taught by Helen Williams and Oli Shorttle

Planetary Chemistry and Evolution - Helen Williams and Oli Shorttle

Text Books

  • De Pater, I., & Lissauer, J. (2015). Planetary sciences / Imke de Pater, University of California, Berkeley & Delft University of Technology, and Jack J. Lissauer, NASA-Ames Research Center, & Stanford University. (Second ed.).
  • Lodders, Katharina, and Jr, Bruce Fegley. (2015). Chemistry of the Solar System. 1st. ed. (Online access restricted to designated PCs in the main UL + affiliate libraries)
  • Treatise on Geochemistry (2003/2014) - 2003 copy in the library, many papers can be found on-line

Light Reading 

  • Sagan, Carl (1980, latest ed. 2013) Cosmos

Lecture 1 - A (non)chondritic Earth (?)

1.1 Core Reading

Longer reads

Lecture 2 - Early Solar System Chronology

2.1 - Core Reading

  • Kruijer et al., Age of Jupiter inferred from the distinct genetics and formation times of meteorites. PNAS (2017)

2.3 - Further reading for presenters

Literature

  • Sanders and Scott, The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science 47 (12), 2170–2192 (2012) doi: 10.1111/maps.12002
  • Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon Not. R. astr. Soc. 180,  57-70
  • A.P. Boss, F.J. Ciesla, 2.3 - The Solar Nebula, Eds: Heinrich D. Holland, Karl K. Turekian, Treatise on Geochemistry (Second Edition), Elsevier, 2014, Pages 37-53, ISBN 9780080983004, doi:10.1016/B978-0-08-095975-7.00119-4.
  • McKeegan et al., The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind. Science 332 (6037), 1528-1532. (2011) doi:10.1126/science.1204636
  • Bertoldi et al., Dust emission from the most distant quasars. A&A 406, L55–L58 (2003) DOI: 10.1051/0004-6361:2003
  • Kroupa, On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231-246 (2001)
  • Van Kooten et al., Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. PNAS 113 (8), 2011-2016 (2016)
  • Young, Bayes' Theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the solar system. Astrophys. J. 826 (2), (2016)
  • Fischer and Valenti, The planet-metallicity correlation. Astrophys. J. 622, 1102-1117 (2005)
  • Yurimoto et al., Origin and Evolution of Oxygen Isotopic Compositions of the Solar System. Protostars and Planets V. 849-862.
  • Yurimoto et al., Oxygen Isotopes of Chondritic Components. Rev. Mineral Geochem. 68, 141-186 (2008)
  • Davis and McKeegan, 1.11 Short-Lived Radionuclides and Early Solar System Chronology. Ed. Holland & Turekian, Treatise on Geochemistry (2nd Edition), Elsevier, 361-395, (2014). ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00113-3 
  • Galy et al., The Formation of Chondrules at High Gas Pressures in the Solar Nebula. Science 290 (5497), 1751-1752 (2000). doi: 10.1126/science.290.5497.1751
  • Meng et al., The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. Astrophys. J. 836 (34), 1-19 (2017)
  • Lee et al., Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 3 (1), 109-112 (1976)
  • MacPherson, 1.3 - Calcium–Aluminum-Rich Inclusions in Chondritic Meteorites. Eds. Holland & Turekian, Treatise on Geochemistry (Second Edition), Elsevier, 139-179 (2014). ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00105-4.
  • Sugerman et al., Massive-Star Supernovae as Major Dust Factories. Science 313 (5784), 196-200. (2006) doi: 10.1126/science.112813.
  • Zinner, 1.4 - Presolar Grains. Eds. Holland & Turekian, Treatise on Geochemistry (Second Edition), 181-213. (2014) ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00101-7.
  • Krot et al., Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from refractory grains and inclusions. Meteorit. Planet. Sci. 47 (12), 1948-1979 (2012). doi: 10.1111/maps.12008
  • Testi et al., Dust Evolution in Protoplanetary Disks. In: Protostars and Planets VI, Ed. Beuther et al., University of Arizona Press, Tucson, 914 pp., p.339-361 (2014)
  • Savage and Sembach, Interstellar abundances from absorption-line observations with the Hubble Space TelescopeAnnu. Rev. Astron. Astrophys34, 279-329 (1996)
  • Ebel, Condensation of Rocky Material in Astrophysical Environments. In: Meteorites and the Early Solar System II, Ed. Lauretta and McSween Jr. University of Arizona Press, Tuscon, 943 pp., p.253-277 (2006)
  • Dwek and Scalo, the evolution of refractory interstellar grains in the solar neighbourhood. Astrophys. J. 239, 193-211 (1980)
  • Dorschner and Henning, Dust metamorphosis in the galaxy. The Astron. Astrophys. Rev. 6, 271-333 (1995)
  • Wasserburg et al., Short-lived nuclei in the early Solar System: Possible AGB sources. Nuclear Physics A 777, 5-69 (2006)
  • Sheffer et al., Ultraviolet detection of interstellar 12C17O and the CO isotopomeric ratios toward X Persei. Astrophys. J. 574, 171-174 (2002)
  • Connelly et al., The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science 338 (6107), 651-655 (2012). doi: 10.1126/science.1226919
  • Scott and Krot, 1.2 Chondrites and Their Components. Meteorites and Cosmochemical Processes, V1 Treatise on Geochemistry (2nd Edition), Ed: Davis, Elsevier, 65-137 (2014)
  • Boss, Temperature in protoplanetary disks. Annu. Rev. Earth Planet Sci. 26, 53-80 (1998)
  • Prantzos, On the "Galactic Habitable Zone". Space Sci. Rev. 135, 313-322 (2008). doi: 10.1007/s11214-007-9236-9
  • Heger et al., 2.1 Origin of the Elements. Treatise on Geochemistry (2nd ed.) Ed: Holland and Turekian, Elsevier, 1-14 (2014) ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00117-0

Longer reads


2.4 - Online resources

 3. Core Formation

 3.1 Core Reading

Literature

  • Andrault, D., Bolfan-Casanova, N., Nigro, G. L., Bouhifd, M. A., Garbarino, G., and Mezouar, M. (2011). Solidus and liquidus profiles of chondritic mantle: Implication for melting of the earth across its history. Earth and Planetary Science Letters, 304(1):251 – 259.
  • Bouhifd, M. and Jephcoat, A. P. (2003). The effect of pressure on partitioning of ni and co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth and Planetary Science Letters, 209(1):245 – 255.
  • Capobianco, C. J., Jones, J. H., and Drake, M. J. (1993). Metal-silicate thermochemistry at high temperature: Magma oceans and the “excess siderophile element” problem of the earth’s upper mantle. Journal of Geophysical Research: Planets, 98(E3):5433–5443.
  • Carlson, R. W., Garnero, E., Harrison, T. M., Li, J., Manga, M., McDonough, W. F., Mukhopadhyay, S., Romanowicz, B., Rubie, D., Williams, Q., and Zhong, S. (2014). How did early earth become our modern world? Annual Review of Earth and Planetary Sciences, 42(1):151–178.
  • Davies, G. F. (1985). Heat deposition and retention in a solid planet growing by impacts. Icarus, 63(1):45 – 68.
  • Elkins-Tanton, L. T. (2012). Magma Oceans in the Inner Solar System. Annual Review of Earth and Planetary Sciences, 40:113–139.
  • Rubie, D., Melosh, H., Reid, J., Liebske, C., and Righter, K. (2003). Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth and Planetary Science Letters, 205(3):239 – 255.
  • Rubie, D. C., Laurenz, V., Jacobson, S. A., Morbidelli, A., Palme, H., Vogel, A. K., and Frost, D. J. (2016). Highly siderophile elements were stripped from earth’s mantle by iron sulfide segregation. Science, 353(6304):1141–1144.
  • Wade, J. and Wood, B. (2005). Core formation and the oxidation state of the earth. Earth and Planetary Science Letters, 236(1):78 – 95.

 

4. Formation of the Moon

4.1 Core Reading 

Literature

5 - Planetary veneers and volatiles

5.1 - Core Reading

 


5.3 - Further reading for presenters

Literature

6. Mars: history and evolution

6.1 Core reading

  • Wade et al., The divergent fates of primitive hydrospheric water on Earth and Mars. Nature 552 391-394 (2017)

 Literature (also refer to previous seminars!)

  • Walsh et al., A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475 206-209 (2011)
  • Dale et al., Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements, Science 316 (2 012): 72-75
  • Wordsworth, R. The Early climate of Mars. Annual Reviews of Earth and Planetary Sciences. 44, 381-408 (2016)
  • Lammer et al., Outgassing History and Escape of the Martian Atmosphere and Water Inventory, Space Sciences Review 174 113–154 (2013)

7 - Giant planets at home and abroad

7.1 - Core Reading

  • Clarke et al., High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au, The Astrophysical Journal Letters (2018)

7.3 - Further reading for presenters

Longer reads 

  • Planetary Sciences: Second Edition. De Pater and Lissauer. Cambridge University Press. Chapter 13.
  • The Exoplanet Handbook. Perryman. Cambridge University Press.
  • Born of chaos. Batygin et al. Scientific American 2016.

8 - Making a habitable planet

8.1 - Core Reading

  • Rimmer et al. The origin of RNA precursors on exoplanets. Science Advances (2018)

8.3 - Further reading for presenters 

Literature

Longer reads

  • Langmuir & Broecker. How to build a habitable planet: the story of Earth from the Big Bang to Humankind. Princeton.

8.4 - Online Resources

  • www.exoplanets.org - Catalogue of discovered exoplanets. Enables online plotting of datasets and download of the data.
  • www.habitableplanet.org - Web resources for Langmuir and Broecker's book, including slides and figures.
  • http://hzgallery.org/ - List of planets specifically within their star's habitable zone. Includes plots of orbital characteristics of these systems and discussion of habitability criteria.
  • http://depts.washington.edu/naivpl/content/hz-calculator -calculator - Online tool for calculating the location of habitable zones around stars. An implementation of the Kopparapu et al. 2013/2014 work.

Option 9 - Magma Dynamics

This is a reading list for the 2018-19 Part III course in magma dynamics, lectured by John Rudge and John Maclennan.

Option 9 - Magma Dynamics.

Lectures 1-4: John Rudge

Lecture 1

  • Jordan, Jacob S., Marc A. Hesse, and John F. Rudge. “On Mass Transport in Porosity Waves.” Earth and Planetary Science Letters 485 (March 2018): 65–78. https://doi.org/10.1016/j.epsl.2017.12.024.
  • McKenzie, D. “The Generation and Compaction of Partially Molten Rock.” Journal of Petrology 25, no. 3 (August 1, 1984): 713–65. https://doi.org/10.1093/petrology/25.3.713.
  • McKenzie, D. P. “The Compaction of Igneous and Sedimentary Rocks.” Journal of the Geological Society 144, no. 2 (March 1987): 299–307. https://doi.org/10.1144/gsjgs.144.2.0299.
  • McKenzie, Dan, and Marian Holness. “Local Deformation in Compacting Flows: Development of Pressure Shadows.” Earth and Planetary Science Letters 180, no. 1–2 (July 2000): 169–84. https://doi.org/10.1016/S0012-821X(00)00152-7.
  • Rudge, John F. “Analytical Solutions of Compacting Flow Past a Sphere.” Journal of Fluid Mechanics 746 (May 10, 2014): 466–97. https://doi.org/10.1017/jfm.2014.109.
  • Simpson, G., and M. Spiegelman. “Solitary Wave Benchmarks in Magma Dynamics.” Journal of Scientific Computing 49, no. 3 (December 2011): 268–90. https://doi.org/10.1007/s10915-011-9461-y.
  • Spiegelman, Marc. “Flow in Deformable Porous Media. Part 1 Simple Analysis.” Journal of Fluid Mechanics 247 (February 1993): 17–38. https://doi.org/10.1017/S0022112093000369.
  • Spiegelman, Marc. “Flow in Deformable Porous Media. Part 2 Numerical Analysis – the Relationship between Shock Waves and Solitary Waves.” Journal of Fluid Mechanics 247 (February 1993): 39–63. https://doi.org/10.1017/S0022112093000370.
  • Whitehead, John A., and Karl R. Helfrich. “Wave Transport of Deep Mantle Material.” Nature 336, no. 6194 (November 1988): 59–61. https://doi.org/10.1038/336059a0.
  • Wiggins, Chris, and Marc Spiegelman. “Magma Migration and Magmatic Solitary Waves in 3-D.” Geophysical Research Letters 22, no. 10 (May 15, 1995): 1289–92. https://doi.org/10.1029/95GL00269.

 

Lecture 2

  • Alisic, Laura, Sander Rhebergen, John F. Rudge, Richard F. Katz, and Garth N. Wells. “Torsion of a Cylinder of Partially Molten Rock with a Spherical Inclusion: Theory and Simulation: TORSION OF PARTIALLY MOLTEN CYLINDER.” Geochemistry, Geophysics, Geosystems 17, no. 1 (January 2016): 143–61. https://doi.org/10.1002/2015GC006061.
  • Bercovici, David, and John F. Rudge. “A Mechanism for Mode Selection in Melt Band Instabilities.” Earth and Planetary Science Letters 433 (January 2016): 139–45. https://doi.org/10.1016/j.epsl.2015.10.051.
  • Holtzman, B. K., N. J. Groebner, M. E. Zimmerman, S. B. Ginsberg, and D. L. Kohlstedt. “Stress-Driven Melt Segregation in Partially Molten Rocks: MELT SEGREGATION IN MOLTEN ROCKS.” Geochemistry, Geophysics, Geosystems 4, no. 5 (May 2003): n/a-n/a. https://doi.org/10.1029/2001GC000258.
  • Holtzman, Benjamin K. “Questions on the Existence, Persistence, and Mechanical Effects of a Very Small Melt Fraction in the Asthenosphere: VERY SMALL MELT FRACTIONS.” Geochemistry, Geophysics, Geosystems 17, no. 2 (February 2016): 470–84. https://doi.org/10.1002/2015GC006102.
  • Katz, Richard F., Marc Spiegelman, and Benjamin Holtzman. “The Dynamics of Melt and Shear Localization in Partially Molten Aggregates.” Nature 442, no. 7103 (August 2006): 676–79. https://doi.org/10.1038/nature05039.
  • Kohlstedt, David L., and Benjamin K. Holtzman. “Shearing Melt Out of the Earth: An Experimentalist’s Perspective on the Influence of Deformation on Melt Extraction.” Annual Review of Earth and Planetary Sciences 37, no. 1 (May 2009): 561–93. https://doi.org/10.1146/annurev.earth.031208.100104.
  • Mei, S., W. Bai, T. Hiraga, and D.L. Kohlstedt. “Influence of Melt on the Creep Behavior of Olivine–basalt Aggregates under Hydrous Conditions.” Earth and Planetary Science Letters 201, no. 3–4 (August 2002): 491–507. https://doi.org/10.1016/S0012-821X(02)00745-8.
  • Qi, Chao, David L. Kohlstedt, Richard F. Katz, and Yasuko Takei. “Experimental Test of the Viscous Anisotropy Hypothesis for Partially Molten Rocks.” Proceedings of the National Academy of Sciences 112, no. 41 (October 13, 2015): 12616–20. https://doi.org/10.1073/pnas.1513790112.
  • Rudge, John F., and David Bercovici. “Melt-Band Instabilities with Two-Phase Damage.” Geophysical Journal International 201, no. 2 (May 1, 2015): 640–51. https://doi.org/10.1093/gji/ggv040.
  • Spiegelman, Marc. “Linear Analysis of Melt Band Formation by Simple Shear: MELT BAND FORMATION BY SIMPLE SHEAR.” Geochemistry, Geophysics, Geosystems 4, no. 9 (September 2003): n/a-n/a. https://doi.org/10.1029/2002GC000499.
  • Stevenson, David J. “Spontaneous Small-Scale Melt Segregation in Partial Melts Undergoing Deformation.” Geophysical Research Letters 16, no. 9 (September 1989): 1067–70. https://doi.org/10.1029/GL016i009p01067.
  • Takei, Yasuko, and Benjamin K. Holtzman. “Viscous Constitutive Relations of Solid-Liquid Composites in Terms of Grain Boundary Contiguity: 1. Grain Boundary Diffusion Control Model.” Journal of Geophysical Research 114, no. B6 (June 25, 2009). https://doi.org/10.1029/2008JB005850.

 

Lecture 3

  • Aharonov, E., J. A. Whitehead, P. B. Kelemen, and M. Spiegelman. “Channeling Instability of Upwelling Melt in the Mantle.” Journal of Geophysical Research: Solid Earth 100, no. B10 (October 10, 1995): 20433–50. https://doi.org/10.1029/95JB01307.
  • Braun, Michael G., and Peter B. Kelemen. “Dunite Distribution in the Oman Ophiolite: Implications for Melt Flux through Porous Dunite Conduits: DUNITE DISTRIBUTION IN THE OMAN OPHIOLITE.” Geochemistry, Geophysics, Geosystems 3, no. 11 (November 2002): 1–21. https://doi.org/10.1029/2001GC000289.
  • Kelemen, P. B., G. Hirth, N. Shimizu, M. Spiegelman, and H. J. Dick. “A Review of Melt Migration Processes in the Adiabatically Upwelling Mantle beneath Oceanic Spreading Ridges.” Edited by J. R. Cann, H. Elderfield, and A. Laughton. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 355, no. 1723 (February 15, 1997): 283–318. https://doi.org/10.1098/rsta.1997.0010.
  • Keller, Tobias, Richard F. Katz, and Marc M. Hirschmann. “Volatiles beneath Mid-Ocean Ridges: Deep Melting, Channelised Transport, Focusing, and Metasomatism.” Earth and Planetary Science Letters 464 (April 2017): 55–68. https://doi.org/10.1016/j.epsl.2017.02.006.
  • Key, Kerry, Steven Constable, Lijun Liu, and Anne Pommier. “Electrical Image of Passive Mantle Upwelling beneath the Northern East Pacific Rise.” Nature 495, no. 7442 (March 2013): 499–502. https://doi.org/10.1038/nature11932.
  • Pec, Matej, Benjamin K. Holtzman, Mark E. Zimmerman, and David L. Kohlstedt. “Reaction Infiltration Instabilities in Mantle Rocks: An Experimental Investigation.” Journal of Petrology 58, no. 5 (May 1, 2017): 979–1003. https://doi.org/10.1093/petrology/egx043.
  • Rees Jones, David W., and Richard F. Katz. “Reaction-Infiltration Instability in a Compacting Porous Medium.” Journal of Fluid Mechanics 852 (October 10, 2018): 5–36. https://doi.org/10.1017/jfm.2018.524.
  • Spiegelman, M. “Physics of Melt Extraction: Theory, Implications and Applications.” Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 342, no. 1663 (January 15, 1993): 23–41. https://doi.org/10.1098/rsta.1993.0002.
  • Spiegelman, Marc. “Geochemical Consequences of Melt Transport in 2-D: The Sensitivity of Trace Elements to Mantle Dynamics.” Earth and Planetary Science Letters 139, no. 1–2 (March 1996): 115–32. https://doi.org/10.1016/0012-821X(96)00008-8.
  • Spiegelman, Marc, Peter B. Kelemen, and Einat Aharonov. “Causes and Consequences of Flow Organization during Melt Transport: The Reaction Infiltration Instability in Compactible Media.” Journal of Geophysical Research: Solid Earth 106, no. B2 (February 10, 2001): 2061–77. https://doi.org/10.1029/2000JB900240.
  • Spiegelman, Marc, and Dan McKenzie. “Simple 2-D Models for Melt Extraction at Mid-Ocean Ridges and Island Arcs.” Earth and Planetary Science Letters 83, no. 1–4 (May 1987): 137–52. https://doi.org/10.1016/0012-821X(87)90057-4.
  • Team, T. M. S. “Imaging the Deep Seismic Structure Beneath a Mid-Ocean Ridge: The MELT Experiment.” Science 280, no. 5367 (May 22, 1998): 1215–18. https://doi.org/10.1126/science.280.5367.1215.

 

Lecture 4

  • Burley, Jonathan M.A., and Richard F. Katz. “Variations in Mid-Ocean Ridge CO2 Emissions Driven by Glacial Cycles.” Earth and Planetary Science Letters 426 (September 2015): 246–58. https://doi.org/10.1016/j.epsl.2015.06.031.
  • Conrad, C. P. “How Climate Influences Sea-Floor Topography.” Science 347, no. 6227 (March 13, 2015): 1204–5. https://doi.org/10.1126/science.aaa6813.
  • Crowley, J. W., R. F. Katz, P. Huybers, C. H. Langmuir, and S.-H. Park. “Glacial Cycles Drive Variations in the Production of Oceanic Crust.” Science 347, no. 6227 (March 13, 2015): 1237–40. https://doi.org/10.1126/science.1261508.
  • Crowley, J. W., R. F. Katz, P. Huybers, C. H. Langmuir, and S.-H. Park. “Response to Comment on ‘Glacial Cycles Drive Variations in the Production of Oceanic Crust.’” Science 349, no. 6252 (September 4, 2015): 1065–1065. https://doi.org/10.1126/science.aab3497.
  • Goff, J. A. “Comment on ‘Glacial Cycles Drive Variations in the Production of Oceanic Crust.’” Science 349, no. 6252 (September 4, 2015): 1065–1065. https://doi.org/10.1126/science.aab2350.
  • Huybers, P., C. Langmuir, R. F. Katz, D. Ferguson, C. Proistosescu, and S. Carbotte. “Comment on ‘Sensitivity of Seafloor Bathymetry to Climate-Driven Fluctuations in Mid-Ocean Ridge Magma Supply.’” Science 352, no. 6292 (June 17, 2016): 1405–1405. https://doi.org/10.1126/science.aae0451.
  • Huybers, Peter, and Charles Langmuir. “Feedback between Deglaciation, Volcanism, and Atmospheric CO2.” Earth and Planetary Science Letters 286, no. 3–4 (September 2009): 479–91. https://doi.org/10.1016/j.epsl.2009.07.014.
  • Jull, M., and D. McKenzie. “The Effect of Deglaciation on Mantle Melting beneath Iceland.” Journal of Geophysical Research: Solid Earth 101, no. B10 (October 10, 1996): 21815–28. https://doi.org/10.1029/96JB01308.
  • Lund, David C., and Paul D. Asimow. “Does Sea Level Influence Mid-Ocean Ridge Magmatism on Milankovitch Timescales?: SEA LEVEL AND MID-OCEAN RIDGE MAGMATISM.” Geochemistry, Geophysics, Geosystems 12, no. 12 (December 2011). https://doi.org/10.1029/2011GC003693.
  • Maclennan, J., M. Jull, D. McKenzie, L. Slater, and K. Grönvold. “The Link between Volcanism and Deglaciation in Iceland: VOLCANISM AND DEGLACIATION.” Geochemistry, Geophysics, Geosystems 3, no. 11 (November 2002): 1–25. https://doi.org/10.1029/2001GC000282.
  • Olive, J.- A., M. D. Behn, G. Ito, W. R. Buck, J. Escartin, and S. Howell. “Sensitivity of Seafloor Bathymetry to Climate-Driven Fluctuations in Mid-Ocean Ridge Magma Supply.” Science 350, no. 6258 (October 16, 2015): 310–13. https://doi.org/10.1126/science.aad0715.
  • Olive, Jean-Arthur. “When Less Water Means More Fire.” Nature Geoscience 10, no. 10 (October 2017): 718–19. https://doi.org/10.1038/ngeo3040.
  • Sternai, Pietro, Luca Caricchi, Daniel Garcia-Castellanos, Laurent Jolivet, Tom E. Sheldrake, and Sébastien Castelltort. “Magmatic Pulse Driven by Sea-Level Changes Associated with the Messinian Salinity Crisis.” Nature Geoscience 10, no. 10 (October 2017): 783–87. https://doi.org/10.1038/ngeo3032.
  • Tolstoy, Maya. “Mid-Ocean Ridge Eruptions as a Climate Valve.” Geophysical Research Letters 42, no. 5 (March 16, 2015): 1346–51. https://doi.org/10.1002/2014GL063015.

 

Lectures 5-8: John Maclennan

Lecture 5

  • Biggs, Juliet, and Catherine Annen. “The Lateral Growth and Coalesence of Magma Systems.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180005. https://doi.org/10.1098/rsta.2018.0005.
  • Bowen, N. L. The Evolution of the Igneous Rocks / by N.L. Bowen. First Dover ed. New York: New York : Dover, c1956., 1956.
  • Cann, J. R. “A Model for Oceanic Crystal Structure Developed.” Geophysical Journal International 39, no. 1 (October 1, 1974): 169–87. https://doi.org/10.1111/j.1365-246X.1974.tb05446.x.
  • Cashman, Katharine V., R. Stephen J. Sparks, and Jonathan D. Blundy. “Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes.” Science 355, no. 6331 (March 24, 2017): eaag3055. https://doi.org/10.1126/science.aag3055.
  • Davaille, Anne, and Claude Jaupart. “Transient High-Rayleigh-Number Thermal Convection with Large Viscosity Variations.” Journal of Fluid Mechanics 253, no. 1 (August 1993): 141. https://doi.org/10.1017/S0022112093001740.
  • Dunn, Robert A., Douglas R. Toomey, and Sean C. Solomon. “Three-Dimensional Seismic Structure and Physical Properties of the Crust and Shallow Mantle beneath the East Pacific Rise at 9°30’N.” Journal of Geophysical Research: Solid Earth 105, no. B10 (October 10, 2000): 23537–55. https://doi.org/10.1029/2000JB900210.
  • Gale, Allison, Charles H. Langmuir, and Colleen A. Dalton. “The Global Systematics of Ocean Ridge Basalts and Their Origin.” Journal of Petrology 55, no. 6 (June 2014): 1051–82. https://doi.org/10.1093/petrology/egu017.
  • Irvine, T. Neil, Jens Christian Ø. Andersen, and C. Kent Brooks. “Included Blocks (and Blocks within Blocks) in the Skaergaard Intrusion: Geologic Relations and the Origins of Rhythmic Modally Graded Layers.” GSA Bulletin 110, no. 11 (January 11, 1998): 1398–1447. https://doi.org/10.1130/0016-7606(1998)110<1398:IBABWB>2.3.CO;2.
  • Jackson, M. D., J. Blundy, and R. S. J. Sparks. “Chemical Differentiation, Cold Storage and Remobilization of Magma in the Earth’s Crust.” Nature 564, no. 7736 (December 1, 2018): 405–9. https://doi.org/10.1038/s41586-018-0746-2.
  • Karlstrom, Leif, Scott R. Paterson, and A. Mark Jellinek. “A Reverse Energy Cascade for Crustal Magma Transport.” Nature Geoscience 10, no. 8 (August 2017): 604–8. https://doi.org/10.1038/ngeo2982.
  • Kelemen, Peter B., J. A. Whitehead, Einat Aharonov, and Kelsey A. Jordahl. “Experiments on Flow Focusing in Soluble Porous Media, with Applications to Melt Extraction from the Mantle.” Journal of Geophysical Research: Solid Earth 100, no. B1 (January 10, 1995): 475–96. https://doi.org/10.1029/94JB02544.
  • Korenaga, J, and P Kelemen. “Melt Migration through the Oceanic Lower Crust: A Constraint from Melt Percolation Modeling with Finite Solid Diffusion.” Earth and Planetary Science Letters 156, no. 1–2 (March 15, 1998): 1–11. https://doi.org/10.1016/S0012-821X(98)00004-1.
  • Korenaga, Jun, and Peter B. Kelemen. “Origin of Gabbro Sills in the Moho Transition Zone of the Oman Ophiolite: Implications for Magma Transport in the Oceanic Lower Crust.” Journal of Geophysical Research: Solid Earth 102, no. B12 (December 10, 1997): 27729–49. https://doi.org/10.1029/97JB02604.
  • Maclennan, J. “Mafic Tiers and Transient Mushes: Evidence from Iceland.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180021. https://doi.org/10.1098/rsta.2018.0021.
  • Maclennan, J., D. McKenzie, K. Gronvöld, and L. Slater. “Crustal Accretion under Northern Iceland.” Earth and Planetary Science Letters 191, no. 3–4 (September 2001): 295–310. https://doi.org/10.1016/S0012-821X(01)00420-4.
  • Maclennan, John. “The Supply of Heat to Mid-Ocean Ridges by Crystallization and Cooling of Mantle Melts.” In Magma to Microbe, edited by Robert P. Lowell, Jeffrey S. Seewald, Anna Metaxas, and Michael R. Perfit, 45–73. Washington, D. C.: American Geophysical Union, 2013. https://doi.org/10.1029/178GM04.
  • Marjanović, Milena, Suzanne M. Carbotte, Helene Carton, Mladen R. Nedimović, John C. Mutter, and Juan Pablo Canales. “A Multi-Sill Magma Plumbing System beneath the Axis of the East Pacific Rise.” Nature Geoscience 7, no. 11 (November 2014): 825–29. https://doi.org/10.1038/ngeo2272.
  • Martin, D., and R. Nokes. “A Fluid-Dynamical Study of Crystal Settling in Convecting Magmas.” Journal of Petrology 30, no. 6 (December 1, 1989): 1471–1500. https://doi.org/10.1093/petrology/30.6.1471.
  • Segall, Paul. “Magma Chambers: What We Can, and Cannot, Learn from Volcano Geodesy.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180158. https://doi.org/10.1098/rsta.2018.0158.
  • Sparks, R. S. J., C. Annen, J. D. Blundy, K. V. Cashman, A. C. Rust, and M. D. Jackson. “Formation and Dynamics of Magma Reservoirs.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180019. https://doi.org/10.1098/rsta.2018.0019.
  • White, Robert S., Marie Edmonds, John Maclennan, Tim Greenfield, and Thorbjorg Agustsdottir. “Melt Movement through the Icelandic Crust.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180010. https://doi.org/10.1098/rsta.2018.0010.

 

Lecture 6

  • Blake, S, and N Rogers. “Magma Differentiation Rates from (Ra/Th) and the Size and Power Output of Magma Chambers.” Earth and Planetary Science Letters 236, no. 3–4 (August 15, 2005): 654–69. https://doi.org/10.1016/j.epsl.2005.05.035.
  • Caricchi, Luca, Guy Simpson, and Urs Schaltegger. “Zircons Reveal Magma Fluxes in the Earth’s Crust.” Nature 511, no. 7510 (July 2014): 457–61. https://doi.org/10.1038/nature13532.
  • Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids. Oxford: Clarendon Press, 1959.
  • Cashman, Katharine V., and Bruce D. Marsh. “Crystal Size Distribution (CSD) in Rocks and the Kinetics and Dynamics of Crystallization II: Makaopuhi Lava Lake.” Contributions to Mineralogy and Petrology 99, no. 3 (July 1988): 292–305. https://doi.org/10.1007/BF00375363.
  • Cooper, Kari M. “Time Scales and Temperatures of Crystal Storage in Magma Reservoirs: Implications for Magma Reservoir Dynamics.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180009. https://doi.org/10.1098/rsta.2018.0009.
  • Cooper, Kari M. “Timescales of Crustal Magma Reservoir Processes: Insights from U-Series Crystal Ages.” Geological Society, London, Special Publications 422, no. 1 (2015): 141–74. https://doi.org/10.1144/SP422.7.
  • Cooper, Kari M., and Adam J. R. Kent. “Rapid Remobilization of Magmatic Crystals Kept in Cold Storage.” Nature 506, no. 7489 (February 2014): 480–83. https://doi.org/10.1038/nature12991.
  • Cooper, Kari M., Christy B. Till, Adam J. R. Kent, Fidel Costa, Allison E. Rubin, Darren Gravley, Chad Deering, Jim Cole, and Maitrayee Bose. “Response to Comment on ‘Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals.’” Science 358, no. 6370 (December 22, 2017): eaap9145. https://doi.org/10.1126/science.aap9145.
  • Crank, John. The Mathematics of Diffusion. 2. ed., Reprint. Oxford: Clarendon Press, 1976.
  • Faure, François, Gilles Trolliard, Christian Nicollet, and Jean-Marc Montel. “A Developmental Model of Olivine Morphology as a Function of the Cooling Rate and the Degree of Undercooling.” Contributions to Mineralogy and Petrology 145, no. 2 (May 2003): 251–63. https://doi.org/10.1007/s00410-003-0449-y.
  • Hawkesworth, Chris, Rhiannon George, Simon Turner, and Georg Zellmer. “Time Scales of Magmatic Processes.” Earth and Planetary Science Letters 218, no. 1–2 (January 2004): 1–16. https://doi.org/10.1016/S0012-821X(03)00634-4.
  • Holness, Marian B. “The Effect of Crystallization Time on Plagioclase Grain Shape in Dolerites.” Contributions to Mineralogy and Petrology 168, no. 5 (November 2014). https://doi.org/10.1007/s00410-014-1076-5.
  • Holness, Marian B., Madeleine C. S. Humphreys, Rachel Sides, Rosalind T. Helz, and Christian Tegner. “Toward an Understanding of Disequilibrium Dihedral Angles in Mafic Rocks: DISEQUILIBRIUM DIHEDRAL ANGLES.” Journal of Geophysical Research: Solid Earth 117, no. B6 (June 2012): n/a-n/a. https://doi.org/10.1029/2011JB008902.
  • Holness, Marian B., Chris Richardson, and Rosalind T. Helz. “Disequilibrium Dihedral Angles in Dolerite Sills: A New Proxy for Cooling Rate.” Geology 40, no. 9 (September 2012): 795–98. https://doi.org/10.1130/G33119.1.
  • Leuthold, Julien, Othmar Müntener, Lukas P. Baumgartner, Benita Putlitz, Maria Ovtcharova, and Urs Schaltegger. “Time Resolved Construction of a Bimodal Laccolith (Torres Del Paine, Patagonia).” Earth and Planetary Science Letters 325–326 (April 2012): 85–92. https://doi.org/10.1016/j.epsl.2012.01.032.
  • Neave, David A., Iris Buisman, and John Maclennan. “Continuous Mush Disaggregation during the Long-Lasting Laki Fissure Eruption, Iceland.” American Mineralogist 102, no. 10 (October 2017): 2007–21. https://doi.org/10.2138/am-2017-6015CCBY.
  • Rubin, Allison E., Kari M. Cooper, Christy B. Till, Adam J. R. Kent, Fidel Costa, Maitrayee Bose, Darren Gravley, Chad Deering, and Jim Cole. “Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals.” Science 356, no. 6343 (June 16, 2017): 1154–56. https://doi.org/10.1126/science.aam8720.
  • Wilson, Colin J. N., Daniel J. Morgan, Bruce L. A. Charlier, and Simon J. Barker. “Comment on ‘Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals.’” Science 358, no. 6370 (December 22, 2017): eaap8429. https://doi.org/10.1126/science.aap8429.

 

Lecture 7

  • Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids. Oxford: Clarendon Press, 1959.
  • Chakraborty, S. “Diffusion Coefficients in Olivine, Wadsleyite and Ringwoodite.” Reviews in Mineralogy and Geochemistry 72, no. 1 (January 1, 2010): 603–39. https://doi.org/10.2138/rmg.2010.72.13.
  • Chakraborty, Sumit. “Rates and Mechanisms of Fe-Mg Interdiffusion in Olivine at 980°-1300°C.” Journal of Geophysical Research: Solid Earth 102, no. B6 (June 10, 1997): 12317–31. https://doi.org/10.1029/97JB00208.
  • Costa, F., R. Dohmen, and S. Chakraborty. “Time Scales of Magmatic Processes from Modeling the Zoning Patterns of Crystals.” Reviews in Mineralogy and Geochemistry 69, no. 1 (January 1, 2008): 545–94. https://doi.org/10.2138/rmg.2008.69.14.
  • Crank, John. The Mathematics of Diffusion. 2. ed., Reprint. Oxford: Clarendon Press, 1976.
  • Druitt, T. H., F. Costa, E. Deloule, M. Dungan, and B. Scaillet. “Decadal to Monthly Timescales of Magma Transfer and Reservoir Growth at a Caldera Volcano.” Nature 482, no. 7383 (February 2012): 77–80. https://doi.org/10.1038/nature10706.
  • Martin, V. M., D. J. Morgan, D. A. Jerram, M. J. Caddick, D. J. Prior, and J. P. Davidson. “Bang! Month-Scale Eruption Triggering at Santorini Volcano.” Science 321, no. 5893 (August 29, 2008): 1178–1178. https://doi.org/10.1126/science.1159584.
  • Mutch, Euan J. F., John Maclennan, Oliver Shorttle, Marie Edmonds, and John F. Rudge. “Rapid Transcrustal Magma Movement under Iceland.” Nature Geoscience 12, no. 7 (July 2019): 569–74. https://doi.org/10.1038/s41561-019-0376-9.
  • Mutch, Euan James Forsyth. “Timescales of Magma Residence and Transport underneath Iceland.” University of Cambridge, 2019. https://doi.org/10.17863/CAM.41326.
  • Neave, David A., John Maclennan, Margaret E. Hartley, Marie Edmonds, and Thorvaldur Thordarson. “Crystal Storage and Transfer in Basaltic Systems: The Skuggafjöll Eruption, Iceland.” Journal of Petrology 55, no. 12 (December 2014): 2311–46. https://doi.org/10.1093/petrology/egu058.
  • Rae, Auriol S.P., Marie Edmonds, John Maclennan, Daniel Morgan, Bruce Houghton, Margaret E. Hartley, and Isobel Sides. “Time Scales of Magma Transport and Mixing at Kīlauea Volcano, Hawai’i.” Geology 44, no. 6 (June 2016): 463–66. https://doi.org/10.1130/G37800.1.
  • Rubin, Allison E., Kari M. Cooper, Christy B. Till, Adam J. R. Kent, Fidel Costa, Maitrayee Bose, Darren Gravley, Chad Deering, and Jim Cole. “Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals.” Science 356, no. 6343 (June 16, 2017): 1154–56. https://doi.org/10.1126/science.aam8720.
  • Ruprecht, Philipp, and Terry Plank. “Feeding Andesitic Eruptions with a High-Speed Connection from the Mantle.” Nature 500, no. 7460 (August 2013): 68–72. https://doi.org/10.1038/nature12342.
  • Saunders, K., J. Blundy, R. Dohmen, and K. Cashman. “Linking Petrology and Seismology at an Active Volcano.” Science 336, no. 6084 (May 25, 2012): 1023–27. https://doi.org/10.1126/science.1220066.
  • Shea, Thomas, Fidel Costa, Daniel Krimer, and Julia Eve Hammer. “Accuracy of Timescales Retrieved from Diffusion Modeling in Olivine: A 3D Perspective.” American Mineralogist 100, no. 10 (October 2015): 2026–42. https://doi.org/10.2138/am-2015-5163.
  • Shea, Thomas, Kendra J. Lynn, and Michael O. Garcia. “Cracking the Olivine Zoning Code: Distinguishing between Crystal Growth and Diffusion.” Geology 43, no. 10 (October 2015): 935–38. https://doi.org/10.1130/G37082.1.
  • Sparks, R. S. J., C. Annen, J. D. Blundy, K. V. Cashman, A. C. Rust, and M. D. Jackson. “Formation and Dynamics of Magma Reservoirs.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180019. https://doi.org/10.1098/rsta.2018.0019.
  • White, Robert S., Marie Edmonds, John Maclennan, Tim Greenfield, and Thorbjorg Agustsdottir. “Melt Movement through the Icelandic Crust.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (February 25, 2019): 20180010. https://doi.org/10.1098/rsta.2018.0010.

 

Lecture 8

  • Bindeman, Ilya N., Andrew M. Davis, and Michael J. Drake. “Ion Microprobe Study of Plagioclase-Basalt Partition Experiments at Natural Concentration Levels of Trace Elements.” Geochimica et Cosmochimica Acta 62, no. 7 (April 1998): 1175–93. https://doi.org/10.1016/S0016-7037(98)00047-7.
  • Costa, F., R. Dohmen, and S. Chakraborty. “Time Scales of Magmatic Processes from Modeling the Zoning Patterns of Crystals.” Reviews in Mineralogy and Geochemistry 69, no. 1 (January 1, 2008): 545–94. https://doi.org/10.2138/rmg.2008.69.14.
  • Dohmen, R., and J. Blundy. “A Predictive Thermodynamic Model for Element Partitioning between Plagioclase and Melt as a Function of Pressure, Temperature and Composition.” American Journal of Science 314, no. 9 (November 1, 2014): 1319–72. https://doi.org/10.2475/09.2014.04.
  • Druitt, T. H., F. Costa, E. Deloule, M. Dungan, and B. Scaillet. “Decadal to Monthly Timescales of Magma Transfer and Reservoir Growth at a Caldera Volcano.” Nature 482, no. 7383 (February 2012): 77–80. https://doi.org/10.1038/nature10706.
  • Ferguson, David J., Helge M. Gonnermann, Philipp Ruprecht, Terry Plank, Erik H. Hauri, Bruce F. Houghton, and Donald A. Swanson. “Magma Decompression Rates during Explosive Eruptions of Kīlauea Volcano, Hawaii, Recorded by Melt Embayments.” Bulletin of Volcanology 78, no. 10 (October 2016). https://doi.org/10.1007/s00445-016-1064-x.
  • Ferriss, Elizabeth, Terry Plank, Megan Newcombe, David Walker, and Erik Hauri. “Rates of Dehydration of Olivines from San Carlos and Kilauea Iki.” Geochimica et Cosmochimica Acta 242 (December 2018): 165–90. https://doi.org/10.1016/j.gca.2018.08.050.
  • Gaetani, Glenn A., Julie A. O’Leary, Nobumichi Shimizu, Claire E. Bucholz, and Matthew Newville. “Rapid Reequilibration of H2O and Oxygen Fugacity in Olivine-Hosted Melt Inclusions.” Geology 40, no. 10 (October 2012): 915–18. https://doi.org/10.1130/G32992.1.
  • Hartley, Margaret E., Daniel J. Morgan, John Maclennan, Marie Edmonds, and Thor Thordarson. “Tracking Timescales of Short-Term Precursors to Large Basaltic Fissure Eruptions through Fe–Mg Diffusion in Olivine.” Earth and Planetary Science Letters 439 (April 2016): 58–70. https://doi.org/10.1016/j.epsl.2016.01.018.
  • Hartley, Margaret E., David A. Neave, John Maclennan, Marie Edmonds, and Thor Thordarson. “Diffusive Over-Hydration of Olivine-Hosted Melt Inclusions.” Earth and Planetary Science Letters 425 (September 2015): 168–78. https://doi.org/10.1016/j.epsl.2015.06.008.
  • Martin, V. M., D. J. Morgan, D. A. Jerram, M. J. Caddick, D. J. Prior, and J. P. Davidson. “Bang! Month-Scale Eruption Triggering at Santorini Volcano.” Science 321, no. 5893 (August 29, 2008): 1178–1178. https://doi.org/10.1126/science.1159584.
  • Oeser, Martin, Ralf Dohmen, Ingo Horn, Stephan Schuth, and Stefan Weyer. “Processes and Time Scales of Magmatic Evolution as Revealed by Fe–Mg Chemical and Isotopic Zoning in Natural Olivines.” Geochimica et Cosmochimica Acta 154 (April 2015): 130–50. https://doi.org/10.1016/j.gca.2015.01.025.
  • Rae, Auriol S.P., Marie Edmonds, John Maclennan, Daniel Morgan, Bruce Houghton, Margaret E. Hartley, and Isobel Sides. “Time Scales of Magma Transport and Mixing at Kīlauea Volcano, Hawai’i.” Geology 44, no. 6 (June 2016): 463–66. https://doi.org/10.1130/G37800.1.
  • Ruprecht, Philipp, and Terry Plank. “Feeding Andesitic Eruptions with a High-Speed Connection from the Mantle.” Nature 500, no. 7460 (August 2013): 68–72. https://doi.org/10.1038/nature12342.
  • Shea, Thomas, Kendra J. Lynn, and Michael O. Garcia. “Cracking the Olivine Zoning Code: Distinguishing between Crystal Growth and Diffusion.” Geology 43, no. 10 (October 2015): 935–38. https://doi.org/10.1130/G37082.1.
  • Sio, Corliss Kin I., and Nicolas Dauphas. “Thermal and Crystallization Histories of Magmatic Bodies by Monte Carlo Inversion of Mg-Fe Isotopic Profiles in Olivine.” Geology 45, no. 1 (January 2017): 67–70. https://doi.org/10.1130/G38056.1.

Option 10 - Chemical Weathering

This is a compilation of references and suggested reading for Ed Tipper's course on Chemical Weathering.

Option 10 - Chemical Weathering

Lecture 1

 

Lecture 2

 

Lecture 3

 

Lecture 4

 

Lecture 5

 

Lecture 6

 

Discussion Group

1. Chemical weathering in the Amazon Basin

 

2. Novel tracers of chemical weathering in the Amazon Basin

 

3. SPM in the Arctic Rivers

 

4. Organic carbon transfers in the Arctic

  • Hilton, R. G. et al., 2015. Nature, 524, 7563 84–87.
  • McClelland, J. W. et al., 2016. Global Biogeochemical Cycles, 30, 5 629–643. doi: 10.1002/2015GB005351.
  • Galy, V. et al., 2015. Nature, 521 204-7. doi: 10.1038/nature14400
  • O’Donnell, J. A. et al., 2016. Global Biogeochemical Cycles, 30, 12 1811–1826. doi: 10.1002/2016GB005482

Option 11 - Reconstructing Climate and Ocean Physics

This is the suggested reading for Option 11 (2018-19), Reconstructing Climate and Ocean Physics using the Marine Sedimentary Record, lectured by Alex Piotrowski and Andy Woods.

Lecture 2 - Alex Piotrowski

  • Andrews, John. 2000. “Icebergs and Iceberg Rafted Detritus (IRD) in the North Atlantic: Facts and Assumptions.” Oceanography 13 (3): 100–108. https://doi.org/10.5670/oceanog.2000.19.
  • Dutkiewicz, Adriana, R. Dietmar Müller, Simon O’Callaghan, and Hjörtur Jónasson. 2015. “Census of Seafloor Sediments in the World’s Ocean.” Geology 43 (9): 795–98. https://doi.org/10.1130/G36883.1.
  • Fagel, Nathalie. 2007. “Chapter Four Clay Minerals, Deep Circulation and Climate.” In Developments in Marine Geology, 1:139–84. Elsevier. https://doi.org/10.1016/S1572-5480(07)01009-3.
  • Griffin, John J., Herbert Windom, and Edward D. Goldberg. 1968. “The Distribution of Clay Minerals in the World Ocean.” Deep Sea Research and Oceanographic Abstracts 15 (4): 433–59. https://doi.org/10.1016/0011-7471(68)90051-X.
  • Hemming, Sidney R. 2004. “Heinrich Events: Massive Late Pleistocene Detritus Layers of the North Atlantic and Their Global Climate Imprint.” Reviews of Geophysics 42 (1). https://doi.org/10.1029/2003RG000128.
  • Hodell, David A., Joseph A. Nicholl, Tomaso R. R. Bontognali, Steffan Danino, Javier Dorador, Julian A. Dowdeswell, Joshua Einsle, et al. 2017. “Anatomy of Heinrich Layer 1 and Its Role in the Last Deglaciation: HEINRICH EVENT 1.” Paleoceanography 32 (3): 284–303. https://doi.org/10.1002/2016PA003028.
  • Kohfeld, Karen E, and Sandy P Harrison. 2001. “DIRTMAP: The Geological Record of Dust.” Earth-Science Reviews 54 (1–3): 81–114. https://doi.org/10.1016/S0012-8252(01)00042-3.
  • Syvitski, James P.M, Scott D Peckham, Rachael Hilberman, and Thierry Mulder. 2003. “Predicting the Terrestrial Flux of Sediment to the Global Ocean: A Planetary Perspective.” Sedimentary Geology 162 (1–2): 5–24. https://doi.org/10.1016/S0037-0738(03)00232-X.

 

Lecture 3 - Nick McCave

Sortable Silt

  • McCave, I. N., B. Manighetti, and S. G. Robinson. 1995. “Sortable Silt and Fine Sediment Size/Composition Slicing: Parameters for Palaeocurrent Speed and Palaeoceanography.” Paleoceanography 10 (3): 593–610. https://doi.org/10.1029/94PA03039.
  • McCave, I.N. 2008. “Chapter 8 Size Sorting During Transport and Deposition of Fine Sediments.” In Developments in Sedimentology, 60:121–42. Elsevier. https://doi.org/10.1016/S0070-4571(08)10008-5.
  • McCave, I.N., D.J.R. Thornalley, and I.R. Hall. 2017. “Relation of Sortable Silt Grain-Size to Deep-Sea Current Speeds: Calibration of the ‘Mud Current Meter.’” Deep Sea Research Part I: Oceanographic Research Papers 127 (September): 1–12. https://doi.org/10.1016/j.dsr.2017.07.003.

 

Mechanics

 

Contourites

  • McCave, I. N. 2002. “A Poisoned Chalice?” Science 298 (5596): 1186–87. https://doi.org/10.1126/science.1076960.
  • McCave, I. N., and Brian E. Tucholke. 1986. “Deep Current-Controlled Sedimentation in the Western North Atlantic.” In The Western North Atlantic Region, edited by Peter R. Vogt and Brian E. Tucholke, 451–68. North America: Geology of North America. https://doi.org/10.1130/DNAG-GNA-M.451.

 

Examples

  • Hall, Ian R., I. Nicholas McCave, Nicholas J. Shackleton, Graham P. Weedon, and Sara E. Harris. 2001. “Intensified Deep Pacific Inflow and Ventilation in Pleistocene Glacial Times.” Nature 412 (6849): 809–12. https://doi.org/10.1038/35090552.
  • Kleiven, H. F., I. R. Hall, I. N. McCave, G. Knorr, and E. Jansen. 2011. “Coupled Deep-Water Flow and Climate Variability in the Middle Pleistocene North Atlantic.” Geology 39 (4): 343–46. https://doi.org/10.1130/G31651.1.
  • Roberts, J., I.N. McCave, E.L. McClymont, S. Kender, C.-D. Hillenbrand, R. Matano, D.A. Hodell, and V.L. Peck. 2017. “Deglacial Changes in Flow and Frontal Structure through the Drake Passage.” Earth and Planetary Science Letters 474 (September): 397–408. https://doi.org/10.1016/j.epsl.2017.07.004.
  • Thornalley, D. J. R., M. Blaschek, F. J. Davies, S. Praetorius, D. W. Oppo, J. F. McManus, I. R. Hall, H. Kleiven, H. Renssen, and I. N. McCave. 2013. “Long-Term Variations in Iceland–Scotland Overflow Strength during the Holocene.” Climate of the Past 9 (5): 2073–84. https://doi.org/10.5194/cp-9-2073-2013.

 

Measurement

  • McCave, I. N., and James P. M. Syvitski. 1991. “Principles and Methods of Geological Particle Size Analysis.” In Principles, Methods, and Application of Particle Size Analysis, edited by James P. M. Syvitski, 3–21. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511626142.003.

 

Lecture 5 - Alex Piotrowski

  • Gardner, Wilford D., Mary Jo Richardson, and Alexey V. Mishonov. 2018. “Global Assessment of Benthic Nepheloid Layers and Linkage with Upper Ocean Dynamics.” Earth and Planetary Science Letters 482 (January): 126–34. https://doi.org/10.1016/j.epsl.2017.11.008.
  • Hernandez-Molina, F. J., D. A. V. Stow, C. A. Alvarez-Zarikian, G. Acton, A. Bahr, B. Balestra, E. Ducassou, et al. 2014. “Onset of Mediterranean Outflow into the North Atlantic.” Science 344 (6189): 1244–50. https://doi.org/10.1126/science.1251306.
  • McCave, I. N., and Brian E. Tucholke. 1986. “Chapter 27: Deep Current-Controlled Sedimentation in the Western North Atlantic.” In The Geology of North America; The Western Atlantic Region, edited by Peter R. Vogt and Brian E. Tucholke, M:451–68. Boulder, Colorado: Geological Society of America.
  • Rebesco, Michele, F. Javier Hernández-Molina, David Van Rooij, and Anna Wåhlin. 2014. “Contourites and Associated Sediments Controlled by Deep-Water Circulation Processes: State-of-the-Art and Future Considerations.” Marine Geology 352 (June): 111–54. https://doi.org/10.1016/j.margeo.2014.03.011.
  • Stow, Dorrik A.V, and Mike Mayall. 2000. “Deep-Water Sedimentary Systems: New Models for the 21st Century.” Marine and Petroleum Geology 17 (2): 125–35. https://doi.org/10.1016/S0264-8172(99)00064-1.

Lecture 7 - Alex Piotrowski

Option 12 - Magnetoelastic Coupling

This is the 2018-19 list of reading suggestions for the Option 12 course run by Michael Carpenter.

Books (for dipping into)

 

Review articles and web sites

  • Carpenter (2015) Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J Phys: Condensed Matter 27, 263201. DOI: 10.1088/0953-8984/27/26/263201
  • Ferromagnetic materials: http://www.doitpoms.ac.uk/tlplib/ferromagnetic/index.php
  • Moskowitz, Hitchhiker’s guide to magnetism: www.irm.umn.edu/hg2m/hg2m_index.html
  • Harrison (2000) Magnetic transitions in minerals, Reviews in Mineralogy 39, 175-202. DOI: 10.2138/rmg.2000.07
  • Harrison and Putnis (1999) The magnetic properties and crystal chemistry of oxide spinel solid solutions, Surveys in Geophysics 19, 461-520.

 

Some papers

  • Darby (1967) Tables of the Brillouin function and of the related function for the spontaneous magnetization. Brit. J. Appl. Phys. 18, 1415-1417. DOI: 10.1088/0508-3443/18/10/307
  • Thomson et al (2014) CoF2: a model system for magnetoelastic coupling and elastic softening mechanisms associated with paramagnetic ↔ antiferromagnetic phase transitions. J. Phys.: Cond. Matter 26, 146001. DOI: 10.1088/0953-8984/26/14/146001
  • Zhang et al (2012) Elastic and anelastic anomalies associated with the antiferromagnetic ordering transition in wüstite, FexO. J. Phys.: Cond. Matter 24, 215404. DOI: 10.2138/am.2012.4098
  • Carpenter et al (2012) A linear-quadratic order parameter coupling model for magnetoelastic phase transitions in Fe1-xO and MnO. J. Phys.: Cond. Matter 24, 156002. DOI: 10.1088/0953-8984/24/15/156002
  • Orovova et al (2013) Elastic and anelastic relaxations accompanying magnetic ordering and spin-flop transitions in hematite, Fe2O3. J. Phys.: Cond. Matter 25, 116006. DOI: 10.1088/0953-8984/25/11/116006
  • Kasama et al (2010) Direct observation of ferromagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Earth Planet. Sci. Lett. 297, 10-17. DOI: 10.1016/j.epsl.2010.05.004
  • Zhang et al (2011) Strain coupling mechanisms and elastic relaxation associated with spin state transitions in LaCoO3. J. Phys.: Cond. Matter 23, 145401. DOI: 10.1088/0953-8984/23/14/145401

Option 13 - Magnetism of Earth and Planetary Materials

This is a suggested reading list for the 2018-19 Option 13 course on Magnetism, lectured by Rich Harrison and James Bryson.

Lecture 1

  • Bryson, James F. J., Claire I. O. Nichols, Julia Herrero-Albillos, Florian Kronast, Takeshi Kasama, Hossein Alimadadi, Gerrit van der Laan, Francis Nimmo, and Richard J. Harrison. 2015. “Long-Lived Magnetism from Solidification-Driven Convection on the Pallasite Parent Body.” Nature 517 (7535): 472–75. https://doi.org/10.1038/nature14114.
  • Harrison, Richard J., James F. J. Bryson, Claire I. O. Nichols, and Benjamin P. Weiss. 2017. “Magnetic Mineralogy of Meteoritic Metal: Paleomagnetic Evidence for Dynamo Activity on Differentiated Planetesimals.” In Planetesimals, edited by Linda T. Elkins-Tanton and Benjamin P. Weiss, 204–23. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316339794.010.
  • Harrison, Richard J., Joy Muraszko, David Heslop, Ioan Lascu, Adrian R. Muxworthy, and Andrew P. Roberts. 2018. “An Improved Algorithm for Unmixing First-Order Reversal Curve Diagrams Using Principal Component Analysis.” Geochemistry, Geophysics, Geosystems 19 (5): 1595–1610. https://doi.org/10.1029/2018GC007511.
  • Harrison, R.J., R.E. Dunin-Borkowski, T. Kasama, E.T. Simpson, and J.M. Feinberg. 2015. “Magnetic Properties of Rocks and Minerals.” In Treatise on Geophysics, 609–60. Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00048-8.
  • Lascu, Ioan, Richard J. Harrison, Yuting Li, Joy R. Muraszko, James E. T. Channell, Alexander M. Piotrowski, and David A. Hodell. 2015. “Magnetic Unmixing of First-Order Reversal Curve Diagrams Using Principal Component Analysis: FORC UNMIXING USING PCA.” Geochemistry, Geophysics, Geosystems 16 (9): 2900–2915. https://doi.org/10.1002/2015GC005909.
  • “MagIC Workshop 2017.” 2017. 2017. https://www.youtube.com/channel/UC-DbvhEu49a6dZXdvUWorhQ.
  • Pike, Christopher R., Andrew P. Roberts, and Kenneth L. Verosub. 1999. “Characterizing Interactions in Fine Magnetic Particle Systems Using First Order Reversal Curves.” Journal of Applied Physics 85 (9): 6660–67. https://doi.org/10.1063/1.370176.
  • Roberts, Andrew P., Trevor P. Almeida, Nathan S. Church, Richard J. Harrison, David Heslop, Yiliang Li, Jinhua Li, Adrian R. Muxworthy, Wyn Williams, and Xiang Zhao. 2017. “Resolving the Origin of Pseudo-Single Domain Magnetic Behavior: Origin of PSD Behavior.” Journal of Geophysical Research: Solid Earth 122 (12): 9534–58. https://doi.org/10.1002/2017JB014860.
  • Roberts, Andrew P., David Heslop, Xiang Zhao, and Christopher R. Pike. 2014. “Understanding Fine Magnetic Particle Systems through Use of First-Order Reversal Curve Diagrams: FORC Diagrams.” Reviews of Geophysics 52 (4): 557–602. https://doi.org/10.1002/2014RG000462.
  • Roberts, Andrew P., Christopher R. Pike, and Kenneth L. Verosub. 2000. “First-Order Reversal Curve Diagrams: A New Tool for Characterizing the Magnetic Properties of Natural Samples.” Journal of Geophysical Research: Solid Earth 105 (B12): 28461–75. https://doi.org/10.1029/2000JB900326.
  • Tarduno, J. A. 2017. “Tarduno MagIC 2017 Direct Link.” 2017. https://www.youtube.com/watch?v=yhj7ZgpuG6k&list=PLirL2unikKCi9u90CHr8o06QC_AsD-cup.
  • Tarduno, J. A., R. D. Cottrell, W. J. Davis, F. Nimmo, and R. K. Bono. 2015. “A Hadean to Paleoarchean Geodynamo Recorded by Single Zircon Crystals.” Science 349 (6247): 521–24. https://doi.org/10.1126/science.aaa9114.
  • Tauxe, L., S. K. Banerjee, R. F. Butler, and R. van der Roo. 2018. “Essentials of Paleomagnetism: Fifth Web Edition.” 2018. https://earthref.org/MagIC/books/Tauxe/Essentials/.
  • Uehara, Minoru, Jérôme Gattacceca, Hugues Leroux, Damien Jacob, and Cornelis Jacominus van der Beek. 2011. “Magnetic Microstructures of Metal Grains in Equilibrated Ordinary Chondrites and Implications for Paleomagnetism of Meteorites.” Earth and Planetary Science Letters 306 (3–4): 241–52. https://doi.org/10.1016/j.epsl.2011.04.008.
  • Weiss, Benjamin P. 2017. “Weiss MagIC 2017 Direct Link.” 2017. https://www.youtube.com/watch?v=kyxExXdlLpc&list=PLirL2unikKCi9u90CHr8o06QC_AsD-cup&index=7.

 

Lectures 2, 3

  • Einsle, Joshua F., Richard J. Harrison, Takeshi Kasama, Pádraig Ó Conbhuí, Karl Fabian, Wyn Williams, Leonie Woodland, Roger R. Fu, Benjamin P. Weiss, and Paul A. Midgley. 2016. “Multi-Scale Three-Dimensional Characterization of Iron Particles in Dusty Olivine: Implications for Paleomagnetism of Chondritic Meteorites.” American Mineralogist 101 (9): 2070–84. https://doi.org/10.2138/am-2016-5738CCBY.
  • Harrison, R. J., R. E. Dunin-Borkowski, T. Kasama, E. T. Simpson, and J. M. Feinberg. 2007. “Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals.” Treatise on Geophysics, December, 579–630. https://doi.org/10.1016/B978-044452748-6.00049-3.
  • Harrison, Richard J., and Ioan Lascu. 2014. “FORCulator: A Micromagnetic Tool for Simulating First-Order Reversal Curve Diagrams.” Geochemistry, Geophysics, Geosystems 15 (12): 4671–91. https://doi.org/10.1002/2014GC005582.
  • Nagy, Lesleis, Wyn Williams, Adrian R. Muxworthy, Karl Fabian, Trevor P. Almeida, Pádraig Ó Conbhuí, and Valera P. Shcherbakov. 2017. “Stability of Equidimensional Pseudo–single-Domain Magnetite over Billion-Year Timescales.” Proceedings of the National Academy of Sciences 114 (39): 10356–60. https://doi.org/10.1073/pnas.1708344114.
  • Nagy, Lesleis, Wyn Williams, Lisa Tauxe, Adrian R. Muxworthy, and Idenildo Ferreira. 2019. “Thermomagnetic Recording Fidelity of Nanometer-Sized Iron and Implications for Planetary Magnetism.” Proceedings of the National Academy of Sciences 116 (6): 1984–91. https://doi.org/10.1073/pnas.1810797116.

 

Lecture 4

  • Bryson, James F. J., Claire I. O. Nichols, Julia Herrero-Albillos, Florian Kronast, Takeshi Kasama, Hossein Alimadadi, Gerrit van der Laan, Francis Nimmo, and Richard J. Harrison. 2015. “Long-Lived Magnetism from Solidification-Driven Convection on the Pallasite Parent Body.” Nature 517 (7535): 472–75. https://doi.org/10.1038/nature14114.
  • Bryson, James F.J., Nathan S. Church, Takeshi Kasama, and Richard J. Harrison. 2014. “Nanomagnetic Intergrowths in Fe–Ni Meteoritic Metal: The Potential for Time-Resolved Records of Planetesimal Dynamo Fields.” Earth and Planetary Science Letters 388 (February): 237–48. https://doi.org/10.1016/j.epsl.2013.12.004.
  • Bryson, James F.J., Julia Herrero-Albillos, Florian Kronast, Massimo Ghidini, Simon A.T. Redfern, Gerrit van der Laan, and Richard J. Harrison. 2014. “Nanopaleomagnetism of Meteoritic Fe–Ni Studied Using X-Ray Photoemission Electron Microscopy.” Earth and Planetary Science Letters 396 (June): 125–33. https://doi.org/10.1016/j.epsl.2014.04.016.
  • Nichols, Claire I.O., James F.J. Bryson, Julia Herrero-Albillos, Florian Kronast, Francis Nimmo, and Richard J. Harrison. 2016. “Pallasite Paleomagnetism: Quiescence of a Core Dynamo.” Earth and Planetary Science Letters 441 (May): 103–12. https://doi.org/10.1016/j.epsl.2016.02.037.
  • Tarduno, J. A., R. D. Cottrell, F. Nimmo, J. Hopkins, J. Voronov, A. Erickson, E. Blackman, E. R. D. Scott, and R. McKinley. 2012. “Evidence for a Dynamo in the Main Group Pallasite Parent Body.” Science 338 (6109): 939–42. https://doi.org/10.1126/science.1223932.
  • Uehara, Minoru, Jérôme Gattacceca, Hugues Leroux, Damien Jacob, and Cornelis Jacominus van der Beek. 2011. “Magnetic Microstructures of Metal Grains in Equilibrated Ordinary Chondrites and Implications for Paleomagnetism of Meteorites.” Earth and Planetary Science Letters 306 (3–4): 241–52. https://doi.org/10.1016/j.epsl.2011.04.008.

 

Lecture 5

  • Berndt, Thomas, Adrian R. Muxworthy, and Karl Fabian. 2016. “Does Size Matter? Statistical Limits of Paleomagnetic Field Reconstruction from Small Rock Specimens: DOES SIZE MATTER?” Journal of Geophysical Research: Solid Earth 121 (1): 15–26. https://doi.org/10.1002/2015JB012441.
  • Bono, Richard K., John A. Tarduno, Matthew S. Dare, Gautam Mitra, and Rory D. Cottrell. 2018. “Cluster Analysis on a Sphere: Application to Magnetizations from Metasediments of the Jack Hills, Western Australia.” Earth and Planetary Science Letters 484 (February): 67–80. https://doi.org/10.1016/j.epsl.2017.12.007.
  • Cottrell, Rory D., John A. Tarduno, Richard K. Bono, Matthew S. Dare, and Gautam Mitra. 2016. “The Inverse Microconglomerate Test: Further Evidence for the Preservation of Hadean Magnetizations in Metasediments of the Jack Hills, Western Australia: INVERSE MICROCONGLOMERATE TEST.” Geophysical Research Letters 43 (9): 4215–20. https://doi.org/10.1002/2016GL068150.
  • Dare, Matthew S., John A. Tarduno, Richard K. Bono, Rory D. Cottrell, James S. Beard, and Kenneth P. Kodama. 2016. “Detrital Magnetite and Chromite in Jack Hills Quartzite Cobbles: Further Evidence for the Preservation of Primary Magnetizations and New Insights into Sediment Provenance.” Earth and Planetary Science Letters 451 (October): 298–314. https://doi.org/10.1016/j.epsl.2016.05.009.
  • Fu, Roger R., Benjamin P. Weiss, Eduardo A. Lima, Pauli Kehayias, Jefferson F.D.F. Araujo, David R. Glenn, Jeff Gelb, et al. 2017. “Evaluating the Paleomagnetic Potential of Single Zircon Crystals Using the Bishop Tuff.” Earth and Planetary Science Letters 458 (January): 1–13. https://doi.org/10.1016/j.epsl.2016.09.038.
  • Tarduno, J. A., R. D. Cottrell, W. J. Davis, F. Nimmo, and R. K. Bono. 2015. “A Hadean to Paleoarchean Geodynamo Recorded by Single Zircon Crystals.” Science 349 (6247): 521–24. https://doi.org/10.1126/science.aaa9114.
  • Tarduno, J. A., R. D. Cottrell, M. K. Watkeys, A. Hofmann, P. V. Doubrovine, E. E. Mamajek, D. Liu, D. G. Sibeck, L. P. Neukirch, and Y. Usui. 2010. “Geodynamo, Solar Wind, and Magnetopause 3.4 to 3.45 Billion Years Ago.” Science 327 (5970): 1238–40. https://doi.org/10.1126/science.1183445.
  • Tarduno, John A., and Rory D. Cottrell. 2013. “Signals from the Ancient Geodynamo: A Paleomagnetic Field Test on the Jack Hills Metaconglomerate.” Earth and Planetary Science Letters 367 (April): 123–32. https://doi.org/10.1016/j.epsl.2013.02.008.
  • Trail, Dustin, Daniele J. Cherniak, E. Bruce Watson, T. Mark Harrison, Benjamin P. Weiss, and Ian Szumila. 2016. “Li Zoning in Zircon as a Potential Geospeedometer and Peak Temperature Indicator.” Contributions to Mineralogy and Petrology 171 (3). https://doi.org/10.1007/s00410-016-1238-8.
  • Valley, John W., Aaron J. Cavosie, Takayuki Ushikubo, David A. Reinhard, Daniel F. Lawrence, David J. Larson, Peter H. Clifton, et al. 2014. “Hadean Age for a Post-Magma-Ocean Zircon Confirmed by Atom-Probe Tomography.” Nature Geoscience 7 (3): 219–23. https://doi.org/10.1038/ngeo2075.
  • Weiss, Benjamin P., Roger R. Fu, Joshua F. Einsle, David. R. Glenn, Pauli Kehayias, Elizabeth A. Bell, Jeff Gelb, et al. 2018. “Secondary Magnetic Inclusions in Detrital Zircons from the Jack Hills, Western Australia, and Implications for the Origin of the Geodynamo.” Geology 46 (5): 427–30. https://doi.org/10.1130/G39938.1.
  • Weiss, Benjamin P., Adam C. Maloof, Nicholas Tailby, Jahandar Ramezani, Roger R. Fu, Veronica Hanus, Dustin Trail, et al. 2015. “Pervasive Remagnetization of Detrital Zircon Host Rocks in the Jack Hills, Western Australia and Implications for Records of the Early Geodynamo.” Earth and Planetary Science Letters 430 (November): 115–28. https://doi.org/10.1016/j.epsl.2015.07.067.

 

Lecture 6

  • Fu, R. R., B. P. Weiss, E. A. Lima, R. J. Harrison, X.-N. Bai, S. J. Desch, D. S. Ebel, et al. 2014. “Solar Nebula Magnetic Fields Recorded in the Semarkona Meteorite.” Science 346 (6213): 1089–92. https://doi.org/10.1126/science.1258022.
  • Lappe, Sophie-Charlotte L. L., Nathan S. Church, Takeshi Kasama, Alice Bastos da Silva Fanta, Geoff Bromiley, Rafal E. Dunin-Borkowski, Joshua M. Feinberg, Sara Russell, and Richard J. Harrison. 2011. “Mineral Magnetism of Dusty Olivine: A Credible Recorder of Pre-Accretionary Remanence: MINERAL MAGNETISM OF DUSTY OLIVINE.” Geochemistry, Geophysics, Geosystems 12 (12): n/a-n/a. https://doi.org/10.1029/2011GC003811.
  • Lappe, Sophie-Charlotte L. L., Joshua M. Feinberg, Adrian Muxworthy, and Richard J. Harrison. 2013. “Comparison and Calibration of Nonheating Paleointensity Methods: A Case Study Using Dusty Olivine: Non-Heating Paleointensity Methods.” Geochemistry, Geophysics, Geosystems 14 (7): 2143–58. https://doi.org/10.1002/ggge.20141.
  • Uehara, M, and N Nakamura. 2006. “Experimental Constraints on Magnetic Stability of Chondrules and the Paleomagnetic Significance of Dusty Olivines.” Earth and Planetary Science Letters 250 (1–2): 292–305. https://doi.org/10.1016/j.epsl.2006.07.042.

 

Lecture 7

  • Bryson, James F. J., Claire I. O. Nichols, Julia Herrero-Albillos, Florian Kronast, Takeshi Kasama, Hossein Alimadadi, Gerrit van der Laan, Francis Nimmo, and Richard J. Harrison. 2015. “Long-Lived Magnetism from Solidification-Driven Convection on the Pallasite Parent Body.” Nature 517 (7535): 472–75. https://doi.org/10.1038/nature14114.
  • Bryson, James F.J., Nathan S. Church, Takeshi Kasama, and Richard J. Harrison. 2014. “Nanomagnetic Intergrowths in Fe–Ni Meteoritic Metal: The Potential for Time-Resolved Records of Planetesimal Dynamo Fields.” Earth and Planetary Science Letters 388 (February): 237–48. https://doi.org/10.1016/j.epsl.2013.12.004.
  • Bryson, James F.J., Julia Herrero-Albillos, Florian Kronast, Massimo Ghidini, Simon A.T. Redfern, Gerrit van der Laan, and Richard J. Harrison. 2014. “Nanopaleomagnetism of Meteoritic Fe–Ni Studied Using X-Ray Photoemission Electron Microscopy.” Earth and Planetary Science Letters 396 (June): 125–33. https://doi.org/10.1016/j.epsl.2014.04.016.
  • Einsle, Joshua F., Alexander S. Eggeman, Ben H. Martineau, Zineb Saghi, Sean M. Collins, Roberts Blukis, Paul A. J. Bagot, Paul A. Midgley, and Richard J. Harrison. 2018. “Nanomagnetic Properties of the Meteorite Cloudy Zone.” Proceedings of the National Academy of Sciences 115 (49): E11436–45. https://doi.org/10.1073/pnas.1809378115.
  • Nichols, Claire I.O., James F.J. Bryson, Julia Herrero-Albillos, Florian Kronast, Francis Nimmo, and Richard J. Harrison. 2016. “Pallasite Paleomagnetism: Quiescence of a Core Dynamo.” Earth and Planetary Science Letters 441 (May): 103–12. https://doi.org/10.1016/j.epsl.2016.02.037.
  • Tarduno, J. A., R. D. Cottrell, F. Nimmo, J. Hopkins, J. Voronov, A. Erickson, E. Blackman, E. R. D. Scott, and R. McKinley. 2012. “Evidence for a Dynamo in the Main Group Pallasite Parent Body.” Science 338 (6109): 939–42. https://doi.org/10.1126/science.1223932.
  • Uehara, Minoru, Jérôme Gattacceca, Hugues Leroux, Damien Jacob, and Cornelis Jacominus van der Beek. 2011. “Magnetic Microstructures of Metal Grains in Equilibrated Ordinary Chondrites and Implications for Paleomagnetism of Meteorites.” Earth and Planetary Science Letters 306 (3–4): 241–52. https://doi.org/10.1016/j.epsl.2011.04.008.

 

Lecture 8

  • Berndt, Thomas, Adrian R. Muxworthy, and Karl Fabian. 2016. “Does Size Matter? Statistical Limits of Paleomagnetic Field Reconstruction from Small Rock Specimens: DOES SIZE MATTER?” Journal of Geophysical Research: Solid Earth 121 (1): 15–26. https://doi.org/10.1002/2015JB012441.
  • Bono, Richard K., John A. Tarduno, Matthew S. Dare, Gautam Mitra, and Rory D. Cottrell. 2018. “Cluster Analysis on a Sphere: Application to Magnetizations from Metasediments of the Jack Hills, Western Australia.” Earth and Planetary Science Letters 484 (February): 67–80. https://doi.org/10.1016/j.epsl.2017.12.007.
  • Cottrell, Rory D., John A. Tarduno, Richard K. Bono, Matthew S. Dare, and Gautam Mitra. 2016. “The Inverse Microconglomerate Test: Further Evidence for the Preservation of Hadean Magnetizations in Metasediments of the Jack Hills, Western Australia: INVERSE MICROCONGLOMERATE TEST.” Geophysical Research Letters 43 (9): 4215–20. https://doi.org/10.1002/2016GL068150.
  • Dare, Matthew S., John A. Tarduno, Richard K. Bono, Rory D. Cottrell, James S. Beard, and Kenneth P. Kodama. 2016. “Detrital Magnetite and Chromite in Jack Hills Quartzite Cobbles: Further Evidence for the Preservation of Primary Magnetizations and New Insights into Sediment Provenance.” Earth and Planetary Science Letters 451 (October): 298–314. https://doi.org/10.1016/j.epsl.2016.05.009.
  • Fu, Roger R., Benjamin P. Weiss, Eduardo A. Lima, Pauli Kehayias, Jefferson F.D.F. Araujo, David R. Glenn, Jeff Gelb, et al. 2017. “Evaluating the Paleomagnetic Potential of Single Zircon Crystals Using the Bishop Tuff.” Earth and Planetary Science Letters 458 (January): 1–13. https://doi.org/10.1016/j.epsl.2016.09.038.
  • Tang, Fengzai, Richard J. M. Taylor, Josh F. Einsle, Cauê S. Borlina, Roger R. Fu, Benjamin P. Weiss, Helen M. Williams, et al. 2019. “Secondary Magnetite in Ancient Zircon Precludes Analysis of a Hadean Geodynamo.” Proceedings of the National Academy of Sciences 116 (2): 407–12. https://doi.org/10.1073/pnas.1811074116.
  • Tarduno, J. A., R. D. Cottrell, W. J. Davis, F. Nimmo, and R. K. Bono. 2015. “A Hadean to Paleoarchean Geodynamo Recorded by Single Zircon Crystals.” Science 349 (6247): 521–24. https://doi.org/10.1126/science.aaa9114.
  • Tarduno, John A., and Rory D. Cottrell. 2013. “Signals from the Ancient Geodynamo: A Paleomagnetic Field Test on the Jack Hills Metaconglomerate.” Earth and Planetary Science Letters 367 (April): 123–32. https://doi.org/10.1016/j.epsl.2013.02.008.
  • Weiss, Benjamin P., Roger R. Fu, Joshua F. Einsle, David. R. Glenn, Pauli Kehayias, Elizabeth A. Bell, Jeff Gelb, et al. 2018. “Secondary Magnetic Inclusions in Detrital Zircons from the Jack Hills, Western Australia, and Implications for the Origin of the Geodynamo.” Geology 46 (5): 427–30. https://doi.org/10.1130/G39938.1.
  • Weiss, Benjamin P., Adam C. Maloof, Nicholas Tailby, Jahandar Ramezani, Roger R. Fu, Veronica Hanus, Dustin Trail, et al. 2015. “Pervasive Remagnetization of Detrital Zircon Host Rocks in the Jack Hills, Western Australia and Implications for Records of the Early Geodynamo.” Earth and Planetary Science Letters 430 (November): 115–28. https://doi.org/10.1016/j.epsl.2015.07.067.

Option 16 - Vertebrate Paleontology

This is the reading list for option 16, 2018-19 - a part III course in vertebrate paleontology lectured by Dave Norman.

Reading List - Option 16 (2019)

Please note that if references are marked with an asterisk (*) , they have been highlighted by your lecturers as being particularly useful to you.

Part III Option 16, Vertebrate Palaeobiology

Lecture 1. CHORDATE ORIGINS

A. General background textbook

  • Pough, FH Janis, CM & JB Heiser (2012 – 9th edn). Vertebrate Life Prentice Hall/Cummings (Interesting mix of biology and palaeontology – worth dipping into and much less turgid than Benton)
  • Benton, MJ (2015). Vertebrate Palaeontology. Blackwells. (Generalised overview of the whole course, but superficial in too many respects)

B. Useful textbooks (next few lectures)

  • Janvier, P. (1996). Early vertebrates. Oxford University Press. (Detailed perspective on the whole thing)
C. Background (might be worth just skimming through)
  • Jefferies, RPS. (1986). The ancestry of the vertebrates. British Museum (Natural History). The ultimate book on "calcichordates" – contains some interesting stuff (systematics, chordate anatomy/development, echinoderm anatomy and palaeontology … as well as his philosophy)
  • Gee, H. (1996). Before the backbone. Chapman and Hall. (Lots of background, and far too much about "calcichordates" [he was obviously a convert to the idea] but you get plenty of general discussion about the controversy)

I WILL LEAVE MY PERSONAL COPIES OF THESE BOOKS AND OTHER REFERENCES IN THE LAB – PLEASE LOOK AFTER THEM AND IF YOU MUST BORROW FOR A SHORT WHILE PLEASE BE KIND ENOUGH TO RETURN THEM PROMPTLY. THANK YOU FOR YOUR CONSIDERATION - DN

D. Some specific references for today’s lecture:

  • Telford, Budd & Philippe (2015). Phylogenomic insights into Animal Evolution. Current Biology 25: R879-887.
  • Cameron, C.B., Garey, J.R. & Swalla, B.J. (2000). Evolution of the chordate body plan: new insights from phylogenetic analysis of deuterostome phyla. PNAS 97: 4469-4474.
  • Garcia-Fernandez, J. & Holland, P.W.H. (1994). Archetypal organisation of the amphioxus Hox gene cluster. Nature 370: 563-566 (see News and Views in the same issue for a far more digestible version of what this is about).
  • Shu, D-G. et al (2003). Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421: 526-529. (Cambrian chordate discoveries).
  • Dominguez, P., Jacobson, A.G. & Jefferies, R.P.S. (2002). Paired gill slits in a fossil with a calcite skeleton. Nature 417: 841-844. (a sort of … “I told you so!” by Dick Jefferies).
  • Conway Morris & Caron (2012). Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. Biol. Rev. 87: 480- 512.
  • Han, J et al (2017). Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). Nature 542: 228-231. doi:10.1038/nature21072

E. Other stuff possibly worth looking at:

  • Bourlat, S.J et al. (2006). Deuterostome phylogeny reveals chordates and the new phylum Xenoturbellida. Nature 444: 85-88.
  • Quental, T.B & Marshall, C.R. (2010). Diversity dynamics: molecular phylogenies need the fossil record. TREE 25: 434-441.

Lecture 2. TOWARD THE FIRST VERTEBRATES

Some specific textbooks:

  • **Janvier, P. (1996) Early vertebrates. Oxford University Press (good ref)
  • Ahlberg, PE (ed) (2001) Major events in early vertebrate evolution. Taylor & Francis (dip into)

General textbooks:

  • Kardong, KV (2002). Vertebrates. Comparative anatomy, function and evolution. McGraw Hill.
  • Liem, Bemis, Walker & Grande (2001). Functional anatomy of the vertebrates. Harcourt
Some specific references:
  • Donoghue, PCJ, Forey, PL & Aldridge, RJ (2000) Conodont affinity and chordate phylogeny. Biological Reviews 75: 191-251. (The definitive story – Nope! see Murdock et al (below).
  • **Murdock, Dong, Repetski, et al (2013). The origin of conodonts and of vertebrate mineralized skeletons. Nature 502: 546-549. Note also the News & Views by Phil Janvier in same issue: p. 457-8 for another view.
  • Friedman M & Brazeau (2010). A reappraisal of the origin and basal radiation of the osteichthyes. J. Vert. Paleo. 30: 36-56.
  • **Mallatt, J (1996) Ventilation and the origin of jawed vertebrates. Zoological Journal of the Linnean Society 117: 329-404. (Looong paper, extract basic message rather than fine detail – lecture refers to this stuff)

Lecture 3. THE ORIGIN OF TETRAPOD FISH

Useful books:

  • **Janvier, P (1996). Early vertebrates. Oxford University Press
  • Pough, FH Janis, CM & Heiser, JB (2012). Vertebrate Life. Prentice Hall
  • *Benton, M (2015). Vertebrate Palaeontology. Blackwells

Specific references:

  • **Ahlberg, PE (ed) (2001). Major events in early vertebrate evolution. Taylor Francis (various views and commentaries – to dip into only).
  • **Friedman, M & Brazeau, MD (2010). A re-appraisal of the origin and basal radiation of the osteichthyes. Journal of Vertebrate Paleontology 30: 36-56.

Lecture 4. LEAVING THE WATER & EXPLOITING THE LAND

Useful textbooks:

  • **Clack JA (2012). Gaining ground. Indiana University Press.
  • *Laurin, M (2010). How vertebrates left the water. Univ California Press. (Interesting and somewhat philosophical counterpoint to Clack)
  • Shubin N (2009). Your inner fish. Penguin. (Accessible account, stressing his own discoveries – of course!).

Specific references:

  • Coates, MI (1995). Fish fins or tetrapod limbs – a simple twist of fate? Current Biology 5: 844-848. (Evo-devo of limb origins from fins).
  • Coates, MI (1996). The Devonian tetrapod Acanthostega gunnari Jarvik: poscranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Transactions of the Royal Society of Edinburgh: Earth Sciences 87: 363-421.
  • Ruta M, Coates MI, Quicke DLJ (2003). Early tetrapod relationships revisited. Biological Reviews 78: 251-345. (Horrendously long & complex ... skim?).
  • Daeschler EB, Shubin NH, Jenkins FA (2006). A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440: 757-763 (and the next article in the same issue of this journal on the structure/function of the forelimb).

The thought-provoker:

  • Carroll RL (1970). Quantitative aspects of the amphibian-reptilian transition. Forma et Functio 3: 165-178. Great rarity today – photocopies in the lab. He may be wrong; however, I just think that this is an intellectually interesting and genuinely palaeobiological approach fusing the biology and habits in animals living today that inhabit the ‘transition zone’ between water and land, a pattern (size change) seen in the FR and detailed anatomical evidence from living and fossil taxa). Question he tries to answer: How do you tell the type of egg and animal lays from the shape of its ears?

Some 'extras':

  • Janis & Farmer (1999). Proposed habitats of early tetrapods: gills, kidneys and the water-land transition. Zool J Linn Soc 126: 117-126. (Nice ‘outside the box’ thinking on the subject – predicted things that proved to be true).
  • Pierce, Clack & Hutchinson (2012). Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 486: 523-626. (Using ‘hi-tech’ to tell us what we pretty-much already knew?)
  • Pierce, et al (2013). Vertebral architecture in the earliest stem tetrapods. Nature 494: 226-229. (More hi-tech insights into how vertebrae were constructed in gravitationally challenged fishes – poses more questions than it answers).
  • Nyakatura et al (2019). Reverse-engineering the locomotion of a stem amniote. Nature 565: 351-355. (As it says on the tin! Tracks, the fossil (digitized), living animal locomotion all drawn together …)

Lecture 5. CLADE DIAPSIDA: ALTERNATIVE ‘SOLUTIONS’ TO TERRESTRIAL LIFE

Useful textbooks:

  • Sumida S & Martin KLM (1997). Amniote origins. Academic Press
  • *Pough, Janis & Heiser (2012). Vertebrate Life. Prentice Hall
  • Benton (2015). Vertebrate Palaeontology. Blackwells.

Thought-provoking references on the biology/physiology of transition:

  • *Janis CM & Keller JC (2001). Modes of ventilation in early tetrapods: costal aspiration as a key feature of amniotes. Acta Palaeontologica Polonica 46: 137-170 (long-winded – pun not intended – interesting observations on amniote biology and evolution).
  • *Farmer C & K Sanders (2010). Unidirectional airflow in the lungs of alligators. Science 327: 338-340. (Ah ha! so it is likely that basal archosaurs had efficient lungs as well ... so what does that tell us?) – some varanids (lepidosauromorphs) may also have unidirectional lungs
  • **Yang et al. (2019) Pterosaur integumentary structures with complex featherlike branching. Nature (ecology & evolution) 3: 24-30.

Lecture 6. DINOSAURS AND INSIGHTS INTO THEIR BIOLOGY

Useful textbooks:

  • *Brusatte S (2012) Dinosaur paleobiology. Wiley-Blackwell
  • Fastovsky D & Weishampel D (2005) The evolution and extinction of the dinosaurs. Cambridge University Press.
  • Curry-Rogers K & Wilson J (2005). The Sauropods: evolution and paleobiology. California University Press
  • Norman D (2017). Dinosaurs – a very short introduction. (2nd ed). Oxford University Press. (well? … must be rubbish!)

Specific references:

  • Sereno P (1999). The evolution of Dinosaurs. Science 284: 2137-2147. (A succinct review – but this is ‘Sereno-world’ view)
  • *Godefroid et al. (2014). A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345: 451-455.
  • *Baron, Norman & Barrett (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543: 501-506. (stirred things up nicely! Matt Baron will be giving a seminar soon)
  • Langer et al (2017). Untangling the dinosaur family tree. Nature E1-E3 (Nov. 2017). (A desperate attempt by a self-styled “international consortium of experts” to prove us wrong! See our reply).
  • *Rayfield, Norman et al (2001). Cranial design and function in a large theropod dinosaur. Nature 409: 1033. (Engineering design to the rescue? A bit ancient now, but this was the beginning of a completely new era of research)
  • *Brasier, Norman, Liu et al (2017). Remarkable preservation of brain tissues in an Early Cretaceous iguanodontian dinosaur. Geological Society of London, Special Publications, 448 doi.org/10.1144/SP448.3. (As it says on the tin!)
  • *Sander, et al (2011). Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86: 117-155.
  • Gatesy S (1990). Caudifemoral musculature and the evolution of theropod locomotion. Paleobiology 16: 170-186. (Establishing how theropod dinosaurs might have become bird-like)
  • *Xu et al. (2014). An integrative approach to the understanding of bird origins. Science 346: 1341 summary & (issue 6215 - 8 pages). Gives you a 'heads-up' for the later lecture as well.

Soft Tissues

  • Chin, K et al (1998). A king-sized theropod coprolite. Nature 393: 680-682. (see also News and Views in same issue).
  • Varricchio, DJ (2001). Gut contents from a Cretaceous tyrannosaurid: implications for theropod digestive tracts. J. Paleontology 75: 401-406.
  • Rothschild BM et al (1997) Tyrannosaurs suffered from gout. Nature 387: 357
  • Schweitzer MH et al. (1994). Heme compounds in dinosaur trabecular bone. PNAS 94: 6291-6296.
  • Schweitzer MH & JR Horner (1999). Intravascular microstructures in the trabecular bone tissues of Tyrannosaurus rex. Annales de Paléontologie 85: 179-192.
  • Schweitzer MH et al (2005). Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 307: 1952-1955.
  • Schweitzer MH et al (2007). Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 316: 277-280.
  • Schweitzer MH, Wittmeyer JL & JR Horner (2005). Gender-specific reproductive tissue in ratites and Tyrannosaurus rex. Science 308: 1456-1460.
  • Asara JM et al (2007). Protein sequences from Mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316: 280-285. (see the subsequent technical discussion/criticism that followed)
  • Organ CL et al (2008). Molecular phylogenetics of Mastodon and Tyrannosaurus rex. Science 320: 499. (refuting the refutations!).
  • Barrick RE & Showers WJ (1994). Thermophysiology of Tyrannosaurus rex: evidence from Oxygen isotopes. Science 265: 222-224 (see also comment on page 188).
  • Eagle, RA, et al (2011). Dinosaur body temperature determined from isotopic (13C-18O) ordering in fossil biominerals. Science 333: 443-445.

Lecture 7. CHEWING AND BREATHING (BEING HIGHLY AEROBIC)

Useful textbooks:

  • *Brusatte S (2012) Dinosaur paleobiology. Wiley-Blackwell
  • *Fastovsky D & Weishampel D (2005) The evolution and extinction of the dinosaurs. Cambridge University Press.
  • Norman (2017). Very short introduction to Dinosaurs. OUP.

Some specific references relating to:

1. HERBIVORY

  • Norman D & Weishampel D (1985). Ornithopod feeding mechanisms: their bearing on the evolution of herbivory. Am. Naturalist 126: 151-164. (A ground-breaker!)
  • Farlow J (1987). Speculations about the diet and digestive physiology of herbivorous dinosaurs. Paleobiology 13: 60-72. (General review)
  • Barrett P & Willis K (2001). Did dinosaurs invent flowers? Dinosaurangiosperm co-evolution revisited. Biological Reviews 76: 411-447.
  • Piperno, DR & H-D Sues (2005). Dinosaurs dined on grass. Science 310: 1126-1128. (Predictable, but still unexpected)
  • Holliday & Witmer (2008). Cranial kinesis in dinosaurs: intracranial joints, protractor muscles and their significance for cranial evolution and function in diapsids. J. Vertebr. Paleo. 28: 1073-1088. (Looks technical suggests we were wrong, but in fact it says … nothing!)
  • *Williams V, Barrett P, Purnell, M (2009). Quantitative analysis of dental microwear in hadrosaurid dinosaurs – jaw mechanics and feeding. Proc Natl Acad Sci 106: 11194-11199. OK – we were right!
  • Bell, Snively & Shychoski (2009). A comparison of jaw mechanics in hadrosaurid and ceratopid dinosaurs using FEA. The Anatomical Record 292: 1338-1351. (Not so useful, a bit boring!)
  • *Erickson et al. (2012). Complex dental structure and wear biomechanics in hadrosaurid dinosaurs. Science 338: 98-101. Good
  • Barrett P (2014). Paleobiology of herbivorous dinosaurs. Ann. Rev. Earth Planet Sci 42: 207-230. (rather tedious summary).
  • Mallon & Anderson (2014). The functional and palaeoecological implications of tooth morphology and wear for megaherbivorous dinosaurs .. PlosONE 9 (6) e98605. (Rather too long for its own good)

Depending upon how time elapses (or I get distracted) – we may make start on this topic …

2. RESPIRATION/AEROBIC CAPACITY

  • O'Connor P & L Claessens (2005). Basic avian pulmonary design and flowthrough ventilation in non-avian theropod dinosaurs. Nature 436: 253-256. (a ground-breaking paper)
  • *Farmer C & K Sanders (2010). Unidirectional airflow in the lungs of alligators. Science 327: 338-340. (Ah ha! so basal archosaurs may have possessed unexpectedly efficient lungs as well ... ?)
  • Benson R et al (2012). Air-filled postcranial bones in theropod dinosaurs: physiological implications and the ‘reptile’-bird transition. Biological Reviews 87: 168-193. (What it says on the tin!)

Lecture 8. THE ‘ULTIMATE’ DINOSAURS - BIRDS Useful textbooks:

  • *Gauthier, J & LF Gall (2001). New perspectives on the origin and early evolution of birds. Proceedings of the international symposium in honour of John H Ostrom. Peabody Museum, Yale University.
  • *Brusatte S (2012) Dinosaur paleobiology. Wiley-Blackwell
  • Fastovsky D & Weishampel, D (2005). The evolution and extinction of the dinosaurs. Cambridge University Press.
  • Norman (2017) … well, maybe?

+ a little intellectual excursion into evolutionary theorizing: 'correlated progression' - an approach concerning the question of how to turn a large thermally inert reptile into a small mammal (or a bird) if you allow yourself to think ‘outside the box’ ...

  • *Kemp TS (2005). The origin and evolution of mammals. Oxford Univ Press.

Some specific references (bird origins):

  • Huxley TH (1870). Further evidence of the affinity between the dinosaurian reptiles and birds. Quart. J. Geol. Soc. Lond. 26: 12-31. (He got it! – but nobody realised what he’d done until Ostrom came at it again!)
  • Ostrom JH (1976). Archaeopteryx and the origin of birds. Biol J Linn Soc London 8: 91-182. (Finally nails Heilmann and back to Huxley).
  • *Gatesy SM (1995). Functional evolution of the hindlimb and tail from basal theropods to birds. Functional morphology in vertebrate paleontology (Ed. JJ Thomason. Cambridge Univ Press.
  • Ji & Ji (1996). On the discovery of the earliest fossil bird in China (Sinosauropteryx gen. nov) and the origin of birds. Chinese Geology, 233: 30-33. (The ground-breaker - the first report of feathered theropods from China).
  • Currie, PJ & Chen, PJ (2001). Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Canadian J Earth Sci. 38: 1705-1727. (just a bit of tedious anatomical detail since nothing was done after Ji & Ji).
  • *Gatesy, SM & K. Dial (1996). Locomotor modules and the evolution of avian flight. Evolution 50: 331-340. (Excellent piece of work)
  • Gatesy SM & K. Dial (1996). From frond to fan: Archaeopteryx and the evolution of short-tailed birds. Evolution 50: 2037-2048 (the same story)
  • *Dial K (2003). Wing-assisted inclined running and the evolution of flight. Science 299: 402-404. (neat idea and some biology of living critters).
  • Padian K & Chiappe LM (1998). The origin of birds and their flight. Scientific American (February): 28-37. (Fairly standard review – a bit aged now)
  • *Wagner GP & J Gauthier (1999). A solution to the problem of the homology of the digits in the avian hand. PNAS 96: 5111-5116. (seems a bit improbable … but who knows? … also a critique by Feduccia in same issue)
  • Xu, X. et al (2004). Basal tyrannosauroids from China and evidence of protofeathers in tyrannosauroids. Nature 431: 680-684. (Well, of course!)
  • Xu, X & M. Norell (2004). A new troodontid dinosaur from China with an avian-like sleeping posture. Nature 431: 838-841. ( … like, well … yah!)
  • *Xu X et al. (2009). A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature 459: 940-944. (Really? Well, it depends whether you can go with their anatomy).
  • *Benson et al (2015) Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PloS Biol 12(5): e10011853). (Modelling the FR – by another of my former PhD students).
  • *Xu et al. (2014). An integrative approach to understanding bird origins. Science 346: 1341 & 1253293 (review) – very useful summary.
  • Xu, et al. (2015). A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521: 70-73. (Rather too bizarre for words!)
  • Lockley et al. (2016). Theropod courtship: large-scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs. Sci Rep 6: 18952; doi: 101038/srep18952.

IDP 2 - Earth Sciences

Overall course reading list:

 

Top recommendation:

 

R.T. Pierrehumbert, Principles of Planetary Climate, esp. Chapter 1. (Cambridge University Press, Cambridge UK, ISBN:9780521865562, 2012).

Other texts covering large parts of the course:

M. Scheffer, Critical transitions in nature and society.  (Princeton University Press, Princeton, 2009).

W.F. Ruddiman, Earth’s climate Past and Future, (2001) W. H. Freeman and Co (New York).

H. Elderfield (ed.) The oceans and marine geochemistry, Treatise on Geochemistry vol. 6 (2006) Elsevier.

S. Emerson and J. Hedges, Chemical Oceanography and the Marine Carbon Cycle, (2008) Cambridge University Press.

J.T.Houghton, Global warming, the complete briefing, (2004), Cambridge University Press.

Goosse H., P.Y. Barriat, W. Lefebvre, M.F. Loutre and V. Zunz, (date of view). Introduction to climate dynamics and climate modeling. Online textbook available at http://www.climate.be/textbook.

 

Useful web resources:

http://www.ipcc.ch: International Panel on Climate Change.

 

1A Earth Sciences - Reading List & Resources

This reading list is intended to include the major texts that are in press that cover this course. Most of these books should be available in your college libraries. There may be other (older) texts available that cover the same material either in college libraries, or recommended by lecturers through the year. Recent texts are indicated thus ‘N’. Texts indicated with asterisks will be of use in more than one section of the course, and those marked ‘***’ are particularly recommended. Where the text is available as an e-book the link has been included. Please contact the library if you have any queries about this page.

1A collections screen shotResource: 1A Reference Series: Rocks, Minerals & Fossils 

 

This website houses photographs and descriptions of the specimens found in the 1A (first year) Reference Series at the Department of Earth Sciences, University of Cambridge. This series is a collection of rocks, minerals and fossils used to aid the first year Geology students in their practical revision. It is not an exhaustive collection, but includes the range of specimens with which the first year students should become familiar. You may also want to use The Virtual Microscope web site in conjunction with the Reference series - or Vice Versa

 

Reading List

Recent texts are indicated thus ‘N’. Texts indicated with asterisks will be of use in more than one section of the course, and those marked ‘***’ are particularly recommended.

Introductory texts

  • *** Davidson, JP. Reed, WE, & Davis, PM, 1997. Exploring Earth: an introduction to physical geology. Prentice-Hall. 2nd ed 2002
  • ***N Langmuir, C.H., & Broecker, W.S., 2012. How to Build a Habitable Planet. Princetown University Press. ebook
  • **N Kearey P., Klepais, K.A. & Vine F.J., 2009, Global Tectonics 3rd edition. Blackwell. ebook
  • **N Press, F. 2004, Understanding Earth. Freeman
  • * Duff, D (ed), 1994. Holmes’ principles of physical geology, Chapman and Hall (do not get older editions).
  • Lunine, JI, 2013. Earth: evolution of a habitable world 2nd edition, Cambridge University Press. Ebook
  • Skinner, B.J., Porter, S.C., Park, J. & Freeman, T. 2006, The Dynamic Earth. Wiley.
  • Seager, Sara 2013 Exoplanet Habitability, Science , 340:577-581.

What's the Earth made of? Earth & other planets

  • ***N Cornelis Klein and Tony Philpotts, 2013, Earth Materials: Introduction to Mineralogy and Petrology, Cambridge University Press.
  • ***N Deer, W.A., Howie, R.A. and Zussman, J, 2013. “An Introduction to the rock forming minerals”. Mineralogical Society.
  • *** MacKenzie, W.S. and Guildford, C. “Atlas of Rock-Forming Minerals in Thin Section.” (Longman)
  • * Brown, GC et al, 1992. Understanding the Earth, 2nd edition. Cambridge University Press.
  • * Duff, D (ed), 1994. Holmes’ principles of physical geology, Chapman and Hall (do not get older editions).
  • * Fowler, CMR, 2004. The solid Earth. 2nd edition. Cambridge University Press. Contains much of the geophysics that a petrologist should know.
  • Putnis, Andrew, 1992, “Introduction to Mineral Sciences.” (Cambridge University Press)
  • Wenk, Hans-Rudolf  and Andrei Bulakh, 2004, “Minerals. Their constitution and origin.” (Cambridge University Press) ebook
  • Vernon, Ron H. 2004, “A practical guide to rock microstructure.” (Cambridge University Press) ebook
  • Battey, MH & Pring, A, 1997, Mineralogy for Students (3rd edition). Longman
  • Cox, KG, Price, NB & Harte, B 1988, An introduction to the practical study of crystals, minerals and rocks. McGraw-Hill.
  • MacKenzie, WS & Adams, AE, 1994, A colour atlas of rocks and minerals in thin section, Manson.
  • Scientific American “The Dynamic Earth” Sept. 1983. Chapters on “The Mantle”, “The Core”. - Good introduction to units 15-24.
  • N Schubert, G., Turcotte, D.L. and Olson P., 2001. “Mantle convection in the Earth and planets”. (Cambridge University Press). Ebook

 

SEDIMENTARY PROCESSES AND PRODUCTS

  • ***N Nichols, G. 2009. Sedimentology and stratigraphy, 2nd edition. Wiley-Blackwell. 419 pp. ISBN 978-1-4051-3592-4. Earth Sciences Library B.05.776.1 ebook
  • Stow, D.A.V. 2005. Sedimentary rocks in the field : a colour guide. Manson, 320 pp. ISBN 1-87454-569-3. Earth Sciences Library B.43.59M
  • N Tucker, M.E. 2011. Sedimentary rocks in the field. 4th edition, Wiley, 288 pp. ISBN 0-47085-123-6 Earth Sciences Library B.03.380.6 (3rd edn) ebook 2001
  • Collinson, J.D., Mountney, N. & Thompson, D.B. 2006. Sedimentary structures. 3rd Edition. Terra. 292 pp. ISBN 1-90354-419-X. Earth Sciences Library B.05.438 (2nd edn).
  • Allen, PA, 1997, Earth surface processes. Blackwells. 416 pp. ISBN 0-632-03507-2. Earth Sciences Library B.05.746 ebook

 

EARTH’S CLIMATE SYSTEM

  • *** Cronin, T.M., 2010. Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press, ISBN 978-0-231-14494-0
  • Imbrie, J. and Imbrie, K.P., 1979. Ice Ages: Solving the Mystery. Harvard University Press, ISBN: 0-674-44075-7, 224 pp.
  • IPCC AR4 (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Available on line at: http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html
  • Peixoto, J. and Oort, A.H., 1992. Physics of Climate, Chapter 6, AIP, ISBN 0-88318-711-6, 520pp.
  • Ruddiman, W.F., 2001. Earth's climate: past and future. W.H. Freeman and company, ISBN 0-7167-3741-8 (pbk.), 465 pp.+ xxi
  • Trenberth, K., Fasullo, J., Kiehl, J. (2009). Earth’s global energy budget. Bulletin of the American Meteorological Society. March 2009, 311-323. ejournal

 

PALAEOBIOLOGY

  • Conway-Morris, S. (2003) Life’s solution: inevitable humans in a lonely universe. Cambridge. Ebook
  • Clarkson, E.N.K., 1993. “Invertebrate Palaeontology and Evolution” (4th edition). Blackwells. Ebook
  • Raup, D.M. & Stanley, S.M., 1978. “Principles of Paleontology” (2nd edition). Freeman.
  • Kemp, T.S. 1999. “Fossils and Evolution”. Oxford. 
  • Benton, M. & Harper, D. (1997) Basic palaeontology. Addison Wesley Longman. 
  • Knoll, A.H. (2004). Life on a young planet: The first three billion years of evolution on Earth. Princeton.
  • N Foote, M. & Miller, A. 2007. Principles of Paleontology. Freeman. £40.99. ISBN: 071670613X [NB. This is the successor to D.M. Raup & S.M. Stanley’s Principles of Paleontology.]
  • N Thomson, K. 2005. Fossils: A very short introduction. Oxford University Press. £6.99. ISBN: 9780192805041 Miller. ebook

 

ARRAN FIELD TRIP

 

PROBING THE VERTEBRATE FOSSIL RECORD

 

BRITAIN’S GEOLOGY: SOLVING THE JIGSAW

  • Woodcock, N.H. & Strachan, R.A. (2012) Geological history of Britain and Ireland. (Second edition) Wiley-Blackwell (or first edition, 2000) Ebook
  • Hunter, A. & Easterbrook, G. (2004) The Geological History of the British Isles. Open University.

Link to items on the list held by the Betty & Gordon Moore Library - you will need to be logged in to Raven to access this

 

1B Earth Sciences - Reading Lists

This list summarises the key reference texts [that are mostly in print] that you may wish to use throughout your second year of geology. There may be other books and papers that are suggested for particular parts of the course that are not featured on this list. You should be able to find many of these books in your college libraries, or else in the Departmental library. You may (eventually) wish to consider purchasing those marked **.

Earth Sciences A

MAPS AND STRUCTURES

  • Fossen, H. 2010, Structural geology, Cambridge University Press, 480pp. Ebook
  • McClay, K. R. 2002. The mapping of geological structures. (2nd edition) Wiley, 224 pp.
  • Maltman, A. 1998. Geological maps: an introduction. (2nd Edition) Wiley 260 pp.
  • Park, R. G. 1997. Foundations of structural geology. (3rd edition) Chapman & Hall, 214 pp, reprinted 2005 by Routledge.

 

TECTONICS AND SEISMOLOGY

  • Allen, P.A. 1997, Earth Surface Processes. Blackwell, Oxford, 404p. ISBN 0-632-03507-2. Ebook
  • Cox A. & R.B. Hart. 1986. Plate Tectonics: How it works. Blackwell Scientific Publications. Ebook
  • ** C. Mary Fowler (2004). The Solid Earth, 2nd Edition. Cambridge University Press. (An outstanding book covering a wide range of global geophysics. Will still be useful at Part II.)
  • Stein & Wysession (2003) An introduction to seismology, earthquakes and earth structure
    Alternative reading, covers much of the same subjects as Fowler
    Chapters 3.3, 3.4, 3.5, 4.2, 4.4, 4.6, 4.7, 5.2-5.6

Papers:

  • Lay, Thorne, et al. "The great Sumatra-Andaman earthquake of 26 December 2004." Science 308.5725 (2005): 1127-1133.
  • Simons, Mark, et al. "The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries." Science 332.6036 (2011): 1421-1425.
  • McKenzie, D. P., and W. Morgan. "Evolution of triple junctions." Nature 224 (1969): 125-133.

 

EVOLUTION OF THE HYDROSPHERE

  • W.S. Broecker and T.H. Peng, Tracers in the sea; Eldigio Press, 1982, 690pp. Now out of print, but in many college libraries.
  • G. Faure, Principles of Isotope geology, 2nd edition, Wiley, 1986, 589pp. The standard text for an introduction to isotope systematics.
  • S.M. Libes, An introduction to marine biogeochemistry; Wiley, 1992, 734pp. 2Nd ed 2009 Ebook Covers some of the topics at a less advanced level.
  • Open University, Ocean chemistry and deep-sea sediments, Pergamon Press, 1989 and 1991 (also excellent coverage of basics)

 

SEDIMENTOLOGY

  • Boggs, Sam, 2009. Petrology of sedimentary rocks. Cambridge University Press.
  • ** Bridge, J. and Demicco, R., 2008. Earth Surface Processes, Landforms and Sediment Deposits. Cambridge University Press. Leading text book on the subject.
  • ** Nichols, G. 1999. Sedimentology and stratigraphy. Blackwell Science, 355 pp. Excellent coverage for our courses on both Sedimentology and sedimentary basins. Ebook
  • Reading, H.G. (ed). 1996. Sedimentary environments: processes, facies and stratigraphy. 3rd edition. Blackwell. Ebook Encyclopaedic, reference.
  • Scoffin, T.P. 1987. An introduction to carbonate sediments and rocks. Blackie.
  • Stow, D.A.V. 2005. Sedimentary rocks in the field: A colour guide. Manson Publishing.
  • Tucker, M.E. 2001. An introduction to sedimentary petrology. 3rd edition. Blackwell. Ebook 

 

PALAEOBIOLOGY AND PALAEOECOLOGY

  • Armstrong, H.A. & Braiser, M.D. (2005).  Microfossils (2 nd  Edition). Blackwell Publishing, Oxford.
  • Briggs, D. E. G., and Crowther, P. R. 1990. Palaeobiology, a synthesis. Blackwell Scientific, Oxford. (Short essays on a wide range of palaeobiological topics)
  • Briggs, D.E.G., and Crowther, P.R. 2001. Palaeobiology II, A synthesis. Blackwell Scientific, Oxford. Ebook (Short essays on a wide range of palaeobiological topics)
  • ** Clarkson, E. N. 1998. Invertebrate palaeontology and evolution, 4th ed. Blackwell. Ebook  (A straightforward survey of the important fossil-forming invertebrates)
  • Futuyma, D. J. 2005 Evolution. Sinauer Associates, Sunderland (Massachusetts). 603 pp. A comprehensive and up to date text covering all aspects of evolutionary biology.
  • Lipps, J. H. (ed.) 1993. Fossil prokaryotes and protists. Blackwell Scientific, Boston. (Useful overview of the important fossil-forming protists)
  • Skelton, P. (ed.) 1993. Evolution, a biological and palaeontological approach. Addison-Wesley. Exhaustive coverage of evolutionary principles with a focus on the unique contribution of palaeontological data.

 

VERTEBRATES AND THEIR EVOLUTION

  • Benton, M.J. 2005. Vertebrate Palaeontology 3rd Edn. Blackwell. Ebook
  • Kemp, T.S. 2005. The origin and evolution of mammals. Oxford University Press. Ebook
  • Pough, F.H., Janis, C.M. & Heiser, JB., 2012. Vertebrate life. Pearson, 9th Edition. (Good stuff if you want to learn a little more about the nuts, bolts and biology of these critters - mix of living and fossil forms helps as well.)

 

SEDIMENTARY BASINS

  • Allen PA, Allen JR 2013, Basin Analysis: Principles and Application to Petroleum Play Assessment, Chichester, Wiley-Blackwell.
  • Allen P.A., Allen John R. 2005, Basin analysis: Principles and Applications, Oxford Blackwell Pub, ISBN:9780632052073. 2Nd ed ebook. Good on general principles; more detail than you need, but with a useful chapter on petroleum near the end.
  • Busby, C.J. & Ingersoll, R.V. (eds) 1995 Tectonics of sedimentary basins. Blackwell Science, Oxford. (Takes a geological rather than mechanical view of basins. Useful chapters on basins in each main tectonic setting.)
  • Leeder, M. 1999. Sedimentology and sedimentary basins: from turbulence to tectonics. Blackwell Science, Oxford. Ebook (Mostly on sedimentology, but has a concise reliable treatment of basins at the end.)

 

Earth Sciences B

MAP INTERPRETATION 

    • McClay, KR, 1991. The mapping of geological structures. Wiley. Useful for Part II mapping project.
    • Maltman, A. 1998. Geological Maps: an introduction (2 nd Edition). Wiley. For geological mapwork throughout the course.

     

    ORIGINS OF THE EARTH

    • **Allègre, CJ. 1992. From stone to star. Harvard University Press. An excellent read.
    • Lunine, J. 1998. Earth: evolution of a habitable world. Cambridge University Press.  Early chapters set the context for this course.
    • McSween, H.Y. 1999. Meteorites and their parent planets, 2nd ed. Cambridge University Press.
    • Taylor, S.R. 1998. Destiny or chance: our solar system and its place in the cosmos. Cambridge University Press.

     

    MINERALOGY

    • Battey, MH & Pring, A. Mineralogy for students. 3rd edition. Longman 1997. A modern revision of a long-standing text.
    • **Deer, WA, Howie, RA & Zussman, J, 2013. An introduction to the rock forming minerals. 3rd edition. Mineralogical Society. Otherwise known as “DHZ”. Excellent reference book, and you may take your own copy into the practical exam. This is the one book that you will use through the whole year. Note that a new edition came out in 2013.
    • Nesse, WD, 2003. Introduction to Optical Mineralogy. 3 rd Edition. Oxford University Press. Fine treatment of optics theory.
    • Perkins, D & Henke, KR, 2004. Minerals in thin section, Prentice Hall. Brief introductory text; good pictures of interference figures.
    • Putnis, A, 1992. Introduction to Mineral Sciences. Cambridge University Press. Good for much of this course. Read selectively!

     

    GEOCHEMISTRY

    • Dickin, AP, 2005. Radiogenic isotope geology. (2 nd Edition) Cambridge University Press. More case studies and more up-to-date than Faure, but a bit more advanced.
    • Faure, G. Principles of isotope geology, Wiley, 1986. The long-standing introductory text to stable and radiogenic isotope geochemistry.
    • Gill, R, 1996. Chemical fundamentals of geology. 2nd edition. Chapman and Hall. All the chemistry you had forgotten, and more, in an accessible form.
    • Rollinson, H., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical. An advanced text book but useful for understanding how we use geochemistry to model igneous processes.

     

    IGNEOUS AND METAMORPHIC PETROLOGY

    • Barker, AJ, 1998. Introduction to metamorphic textures and microstructures. 2nd Edition. Thomson science (Chapman and Hall). A good general read on metamorphism, and an essential introduction to metamorphic textures and their interpretations.
    • Best, M.G. & Christiansen, E.H., 2001. Igneous Petrology. Blackwell Science. A good general igneous text book.
    • Blatt, H., Tracey, R.J., Owens, B.E., 2006. Petrology; igneous, sedimentary and metamorphic. 3rd Edition. (Freeman). Good general petrology textbook
    • Brown, GC, Hawkesworth, CJ & Wilson, RCL, 1992. Understanding the Earth. Cambridge University Press. Contains some excellent review chapters.
    • Cox, KG, Bell, JD & Pankhurst, RJ. 1979. The interpretation of Igneous Rocks. Chapman and Hall. Key text for phase diagrams and their interpretation.
    • Fowler, CMR, 2004. The solid earth. Cambridge University Press. Contains much of the geophysics that a petrologist should know.
    • Francis, PW.& Oppenheimer, Volcanoes, 2003. Oxford University Press. Readable and entertaining; a rare combination in a text book.
    • Fry, N. 1993. The field description of metamorphic rocks. Wiley. For fieldwork.
    • **Gill, R., 2010.Igneous Rocks & processes. Wiley. Highly recommended course text
    • McBirney, A.R., 2006. Igneous Petrology (3rd Edition). Jones & Bartlett. A good general igneous text book especially useful for phase diagrams and petrography.
    • Searle, M., 2013. Colliding Continents: A geological exploration of the Himalaya, Karakoram, and Tibet. Oxford University Press. At the same time a book of beautiful mountains as well as a good science overview of Himalayan geology.
    • Sigurdsson, H., ed, 1999. Encyclopedia of volcanoes. Academic Press. The volcano reference book.
    • Spear, FS, 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph. The ‘Big Blue Book’ - the metamorphic petrologists’ bible, and an essential reference text. Much more detail than you need – but it’s all there is!
    • Thorpe, RS & Brown, GC, 1985. The field description of igneous rocks. OU Press. For field and hand-specimen work.
    • Vernon, R.H., 2004. A practical guide to rock microstructure. Cambridge University Press. Outstanding on how to read the rock textures that you will see under the microscope.
    • Wilson M, 1989. Igneous Petrogenesis. Unwin and Hyman. Especially the first four chapters.
    • Yardley, BWD, 1989. An introduction to metamorphic petrology. Longman. Concise and clear introduction to metamorphic petrology.