skip to primary navigationskip to content
 

Part II - Core 3 Petrology

Reading List - Core 3 (2019)

 

Reading list for Tim Holland - Metamorphic topics, 6 Lectures

 

General reading

  • A Philpotts and J Ague. ‘Principles of Igneous and Metamorphic Petrology’.
  • R Vernon and G Clarke. ‘Principles of Metamorphic Petrology’.

 

Schreinemakers/projections (1 & 2)

  • Nordstrom & Munoz. 1985. ‘Geochemical thermodynamics’. Chapter 4. (good intro)
  • Yardley, B. 1989. ‘An introduction to metamorphic petrology’. Appendix. (basic intro)
  • Spear 1993. ‘Metamorphic phase equilibria and pressure-temperature-time paths’. Chapters 5, 8.
  • Philpotts and Ague. ‘Principles of Igneous and Metamorphic Petrology’. Chapter 8.

 

Pelites (1 & 2)

 

Mixed volatile equilibria (3)

 

Granulite facies (4 & 5)

Also a useful guide on the web from Dave Waters:
http://www.earth.ox.ac.uk/?davewa/research/granmig.html

 

Oxidation/reduction and fluids (6)

 

Eclogite facies (7)

  • Holland, 1979. High water activities in the generation of high pressure kyanite eclogites of the Tauern Window, Austria. Journal of Geology 87, 1–27.
  • Chopin et al., 1991. Geology and petrology of the coesite-bearing terrain, Dora Maira massif, Western Alps. Eur J Min 3, 263–291. doi: 10.1127/ejm/3/2/0263
  • Rubatto et al., 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geosci, 4, 338–342, doi:10.1038/ngeo1124.
  • von Blanckenburg, F, Davies, J.H. 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 14, 120–131. doi:10.1029/94TC02051
  • Dale J. and Holland TJB. 2003. Geothermobarometry, P–T paths and metamorphic field gradients of high-pressure rocks from the Adula Nappe, Central Alps. J Met Geol 21, 813–829. doi: 10.1046/j.1525-1314.2003.00483.x
  • Rebay et al., 2010. Calculated phase equilibria for a MORB composition in a P–T range 450-650C and 18-28 kbar: the stability of eclogite. J Met Geol 28, 635–64. doi: 10.1111/j.1525-1314.2010.00882.x
  • Smye, Greenwood and Holland. 2010. Garnet–chloritoid–kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts. J Met Geol 28, 753–76. doi:  10.111/j.1525-1314.2010.00889.x
  • Smye et al., 2011. Rapid formation and exhumation of the youngest Alpine eclogites: A thermal conundrum to Barrovian metamorphism. Earth & Plan. Sci. Lett. 306, 193–204. doi: 10.1016/j.epsl.2011.03.037
  • Warren et al., 2008. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth & Plan. Sci. Lett. 267, 129–14. doi: 10.1016/j.epsl.2007.11.025
  • Schmid et al., 2004. https://earth.unibas.ch/tecto/research/TRANSMED/TRANSMED_all_textfig_correctedII.pdf

 

Metasomatism (8)

  • Brady 1977. Metasomatic zones in metamorphic rocks. Geochim. Cosmochim. Acta., 41, 113-125. doi: 10.1016/0016-7037(77)90191-0
  • Glassley W 1983. Deep crustal Carbonates as CO2 Fluid sources: evidence from metasomatic reaction zones. Cont. Min. Pet. 84, 15–24. doi: 10.1007/BF01132326
  • Thompson AB 1975. Calc-silicate diffusion zones between marble and pelitic schist. J Petrol 16, 314–34. doi: 10.1093/petrology/16.1.314. 
  • Fisher G 1978. Rate laws in metamorphism. Geochim. Cosmochim. Acta, 42, 1035–1050. doi: 10.1016/0016-7037(78)90292-2
  • Miller et al. 2009. Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface. Lithos 107, 53–67. doi: 10.1016/j.lithos.2008.07.015
  • Philpotts & Ague. Chapter 21.

 

Marian Holness - Lectures 7- 11 Igneous Petrography

This is an introductory course on microstructures and how we can use them to interpret rock history, with particular application to igneous rocks. It is a vast subject and we can only touch on a few essential things. These general source books are a good place to look things up.

 General sources 

  • Granitic Pegmatites (2012) Elements, vol. 8, number 4. There are many interesting articles touching on issues of crystal growth.
  • Cashman, K. V. (1990). Textural constraints on the kinetics of crystallization of igneous rocks. Reviews in mineralogy and geochemistry, 24, 259-314. This is a heavy-weight but comprehensive account.
  • Higgins, M.D. (2006) Quantitative textural measurements in igneous and metamorphic petrology. CUP. A good source if you are thinking of doing microstructural work in your Part III project
  • Kretz, R. (1994) Metamorphic Crystallisation. Wiley.
  • Porter, D.A. & Easterling, K.E. (1981) Phase transformations in metals and alloys. (B 30.107)
  • Tiller, W.A. (1977) On the cross-pollenation of crystallisation ideas between metallurgy and geology. Physics and Chemistry of Minerals, 2, 125-151.
  • Vernon, R.H. (2004) A practical guide to rock microstructure. CUP. £34.99. Highly recommended, especially if you are planning to do a hard-rock PhD. This book is pretty much the first place to look if you need to understand any particular microstructure.

 

Crystal nucleation and growth

Topics covered in this introduction include nucleation (homogenous and heterogeneous, including the effects of pore size in nucleation inhibition) and crystal growth mechanisms. The balance between nucleation and growth determines the overall grain size and grain size distribution in the rock.

The reading list provides an entry into research into the controls on microstructure. You might want to start your reading with a perusal of Vernon’s (2004) book on microstructures.

Nucleation and crystal growth

  • Cashman, K.V. & Mangan, M.T. (2014) A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes, Professional Paper 1801-9
  • Cesare, B., Ferrero, S., Salvioli,-Mariani, E., Pedron, D. & Cavallo, A. (2009) “Nanogranite” and glassy inclusions: the anatectic melt in migmatites and granulites. Geology, 37: 627-630.
  • Davis, M.J., & Ihinger, P.D. (1998) Heterogeneous nucleation on bubbles in silicate melt. American Mineralogist, 83, 1008-1015.
  • Hammer, J.E., Sharp, T.G. & Wessel, P. (2010) Heterogeneous nucleation and epitaxial crystal growth of magmatic minerals. Geology, 38, 367-370.
  • Katz, M.G. & Cashman, K.V. (2003) Hawaiian lava flows in the third dimension: identification and interpretation of pahoehoe and ‘a’a distribution in the KP-1 and SOH-4 cores. Geochemistry, Geophysics Geosystems, 4: 8705, doi:10.1029/2001GC000209
  •  Kirkpatrick, R.J. (1981) Kinetics of crystallization of igneous rocks. Mineralogical Society of America, Reviews in Mineralogy, 8, 321-398.
  • Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation. Contributions to Mineralogy and Petrology, 99, 277-291.
  • Putnis, A & Mauthe, G. (2001) The effect of pore size on cementation in porous rocks. Geofluids, 1, 37-41.
  • Roselle, G.T., Baumgartner, L.P. & Chapman, J.A. (1997) Nucleation-dominated crystallisation of forsterite in the Ubehebe Peak contact aureole, California. Geology, 25, 823-826.
  • Swanson, S.E. (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. American Mineralogist, 62, 966-978.

 Crystal size distributions

 Pattern formation during grain growth (relevant to the first practical)

Crystal shape

In this lecture we cover the controls on crystal shape, starting with interface-controlled growth and moving onto diffusion-limited growth. The practical following the lecture gives you the opportunity to look at rocks with dendritic and spherulitic microstructures. There is also a suite of samples demonstrating the progressive metamorphism of chert nodules in dolomite, with the onset of pattern formation at olivine-grade.

The basics of diffusion-limited growth

  • Porter, D.A. & Easterling, K.E. (1981) Phase transformations in metals and alloys. Chapter 4 (B 30.107 or on Moodle)

Morphology 

 Eutectics and pegmatites

 

 Textural equilibrium

Once reaction is over, and if the rock is not being deformed rapidly, microstructures evolve towards a minimum energy state, in which grain shape and the topology of minor phases (such as fluid) are controlled by interfacial energies. If we know something about the relative magnitudes of interfacial energies we can make predictions about what these microstructures look like and therefore predict how fluids move through the Earth.

The practical provides the opportunity to examine microstructures from well-equilibrated environments and to develop a feel for the length- and time-scales over which interfacial energies affect microstructure.

 Theory of textural equilibrium

Applications to natural systems

  • Bruhn, D., Groebner, N. & Kohlstedt, D.L. (2000) An interconnected network of core-forming melts produced by shear deformation. Nature, 403: 883-886.
  • Cheadle, M.J., Elliott, M.T. and McKenzie, D. (2004) Percolation threshold and permeability of crystallising igneous rocks: the importance of textural equilibrium. Geology, 32, 757-760.
  • Ghanbarzadeh, S., Hesse, M.A., Prodanovic, M. & Gardner, J.E. (2015) Deformation-assisted fluid percolation in rock salt. Science, 350: 1069-1072.
  • Holness, M.B. (2006) Melt-solid dihedral angles of common minerals in natural rocks. Journal of Petrology, 47, 791-800.
  • Hunter, R.H. (1987) Textural equilibrium in layered igneous rocks. In: (ed. Parsons, I.) Origins of igneous layering. Dordrecht: D. Reidel. pp. 473–503.
  • Laporte, D., Rapaille, C. & Provost, A. (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths. In: Granite: From segregation of melt to emplacement fabrics. (eds. Bouchez, J.-L., Hutton, D.H. & Stephens, W.E.) pp. 31-54. Kluwer Acad., Norwell, Mass.
  • Laporte, D. & Watson, E.B. (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chemical Geology, 124, 161-184.
  • Minarik, W.G. & Watson, E.B. (1995) Interconnectivity of carbonate melt at low melt fraction. Earth and Planetary Science Letters, 133, 423-437.
  • Shi, C.Y. et al. (2013) Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nature Geoscience, 6: 971-975.

 

Microstructural evolution in cumulates

This lecture shows how we can apply our understanding of nucleation and crystal growth to decoding the solidification history of plutonic rocks. We will focus primarily on large (>1000m) bodies of mafic magma, in which gravitationally-driven separation of solids from residual liquid drives fractionation. Key to understanding the processes occurring during solidification is observation of incompletely solidified material such as drillcore through lava lakes and glassy crystalline nodules.

 

 Physical processes in cumulates

Microstructures in cumulates and their interpretation

 

Layered Intrusions: Rum and Skaergaard

This lecture provides an introduction to layered intrusions, using two end-members. The classic Skaergaard intrusion is the one that started it all (and incidentally resulted in a hiatus in our developing understanding of magma plumbing systems as it is so iconic that no-one could imagine anything looking or behaving different to Skaergaard), forming from closed-system fractionation. The Rum magma chamber was likely to have been more typical of what we imagine shallow-level magma storage immediately feeding the overlying volcano.

 The practical session will provide the opportunity to examine the classic fractionation sequence developed in the Skaergaard.

What is a magma chamber?

  • Cashman, K.V., Sparks, R.S.J. & Blundy, J.D. (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355: eaag3055

Rum

Skaergaard

Marie Edmonds - Lectures 12-14, Volcanic Processes

Pre-eruptive magma storage

General textbooks

  • Igneous and Metamorphic Petrology, by Myron Best, Wiley.
  • Principles of Igneous and Metamorphic Petrology, by Philpotts and Ague, Cambridge University Press.
  • Igneous Petrology, by McBirney, Jones and Bartlett.
  • Fundamentals of physical volcanology, by Parfitt and Wilson, Blackwell
  • Ore Deposit Geology, by Ridley, Cambridge University Press

Review/general papers

  • Cashman KV, Sparks RS. How volcanoes work: A 25 year perspective. Geological Society of America Bulletin. 2013 May 1;125(5-6):664-90.
  • Gonnermann, H., and M. Manga (2006), The fluid mechanics inside a volcano, Annual Reviews or Fluid Mechanics, 39, 321-356.
  • Scandone, R., K. Cashman, and S. Malone (2007), Magma supply, magma ascent and the style of volcanic eruptions, Earth and Planetary Science Letters, 253(3-4), 513-529.
  • Marsh, B. (1989), Magma chambers, Annual Review of Earth and Planetary Sciences, 17, 439-474.
  • Grove TL, Kinzler RJ. Petrogenesis of andesites. Annual Review of Earth and Planetary Sciences. 1986;14:417.
  • Turner SP, George RM, Evans PJ, Hawkesworth CJ, Zellmer GF. Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2000 May 15;358(1770):1443-64.
  • Bachmann O, Bergantz GW. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology. 2004 Aug 1;45(8):1565-82.

Magma degassing and ore deposits

Textbooks

  • *Fundamentals of Physical Volcanology, written by: Liz Parfitt, Lionel Wilson. Wiley.

Reviews/special volumes of journals:

Reviews in Mineralogy and Geochemistry:

  • Sulfur in Magmas and Melts, v. 73, 2011.
  • Minerals, Inclusions and Volcanic Processes v. 69, 2008.
  • Volatiles in Magmas, v. 30, 1994

Specific papers:

  • Halter WE, Pettke T, Heinrich CA. The origin of Cu/Au ratios in porphyrytype ore deposits. Science. 2002 Jun 7;296(5574):1844-6.
  • Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nature Geoscience. 2015 Mar 1;8(3):216-9.
  • Richards JP. The oxidation state, and sulfur and Cu contents of arc
  • magmas: implications for metallogeny. Lithos. 2015 Sep 15;233:27-45.

Volcanic eruptions

Magma rheology and eruption style

  • Cashman, K and J Blundy, 2000. Degassing and crystallization of ascending andesite and dacite. Phil. Trans. R. Soc. Lond. A 358, 1487-1513.

Lava domes

  • Melnik and Sparks, 1999. Nonlinear dynamics of lava dome extrusion. Nature 402, 37-41.
  • Sparks, R. S. J., 1997. Causes and consequences of pressurisation in lava dome eruptions, Earth Plan Sci Lett 50, 3-4, 177–189.

Fragmentation

  • Dingwell, D., 1996. Volcanic Dilemma--Flow or Blow? Science 273, 1054, DOI: 10.1126/science. 273.5278.1054.
  • Papale, P., 1999. Strain-induced fragmentation in volcanic eruptions. Nature 397, 425-428.
  • Rust, AC and KV Cashman, 2011. Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res, 116, B11202, 17 PP., 2011 doi:10.1029/2011JB008494.

Ed Tipper - Lectures 15-19, Isotope Geochemistry

Lecture 15

  • Allegre, C. J. et al., 1984. Earth and Planet. Sci. Lett., 67, 1 19–34.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • DePaolo, D. J. et al., 1976. Geophysical Research Letters, 3, 12 743–746. doi: 10.1029/GL003i012p00743.
  • Dhuime, B. et al., 2017. Sedimentary Geology, 357 16–32. doi: https://doi.org/10.1016/j.sedgeo.2017.06.001.
  • Goldstein, S. J. et al., 1988. Earth and Planetary Science Letters, 87, 3 249–265.
  • Hawkesworth, C. J. et al., 2006. Nature, 443, 7113 811–817. doi: 0.1038/nature05191.
  • Kemp, A. I. S. et al., 2006. Nature, 439, 7076 580–583.
  • Schoene, B. et al., 2014. 4.10 - U–Th–Pb Geochronology, pp. 341–378. Elsevier, Oxford. doi: http://dx.doi.org/10.1016/B978-0-08-095975-7.00310-7.

Lecture 16

  • Burkhardt, C. et al., 2016. Nature, 537 394 EP –.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • Caro, G. et al., 2003. Nature, 423, 6938 428–432.
  • Harrison, T. M., 2009. Annual Review of Earth and Planetary Sciences, 37, 1 479–505. doi: 10.1146/annurev.earth.031208.100151.
  • Kleine, T. et al., 2002. Nature, 418, 6901 952–955.
  • Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
  • Touboul, M. et al., 2007. Nature, 450, 7173 1206–1209.

Lecture 17

  • Herwartz, D. et al., 2014. Science, 344, 6188 1146–1150. doi: 10.1126/science.1251117.
  • Schauble, E. A., 2004. Rev. Min. Geochem., 55 65–112.
  • Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
  • Taylor, H. P. et al., 1962. Geological Society of America Bulletin, 73, 4 461–480. doi: 10.1130/0016- 7606(1962)73[461:RBORIC]2.0.CO;2.
  • Valley, J. W. et al., 2005. Contrib. to Min. Pet., 150, 6 561–580.
  • Young, E. D. et al., 2009. Earth and Planetary Science Letters, 288, 3-4 524–533.
  • Young, E. D. et al., 2016. Science, 351, 6272 493–496. doi: 10.1126/science.aad0525.

Lecture 18

  • Armytage, R. M. G. . et al., 2011. GEOCHIMICA ET COSMOCHIMICA ACTA, 75, 13 3662–3676. doi: 10.1016/j.gca.2011.03.044.
  • Badro, J. et al., 2015. Proceedings of the National Academy of Sciences, 112, 40 12310–12314. doi: 10.1073/pnas.1505672112.
  • Bourdon, B. et al., 2010. Geochim. Cosmochim. Act., 74, 17 5069–5083.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • Fitoussi, C. et al., 2009. Earth and Planet. Sci. Lett. Georg, R. B. et al., 2007. Nature, 447, 7148 1102–1106.
  • Savage, P. S. et al., 2014. Lithos, 190–191 500–519. doi: http://dx.doi.org/10.1016/j.lithos.2014.01.003.
  • Sedaghatpour, F. et al., 2013. Geochimica et Cosmochimica Acta, 120 1–16. doi: http://dx.doi.org/10.1016/j.gca.2013.06.026.
  • Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
  • Shahar, A. et al., 2011. Geochim. Cosmochim. Act., 75, 23 7688–7697. doi: 10.1016/j.gca.2011.09.038.
  • Stracke, A. et al., 2018. Geochimica et Cosmochimica Acta, 226 192–205. doi: https://doi.org/10.1016/j.gca.2018.02.002
  • Wiechert, U. et al., 2006. Earth and Planet. Sci. Lett., 256, 3-4 360–371. doi: 10.1016/j.epsl.2007.01.007
  • Young, E. D. et al., 2015. Chemical Geology, 395, 0 176–195. doi: http://dx.doi.org/10.1016/j.chemgeo.2014.12.013.

Lecture 19

  • Farley, K. A. et al., 1998. Annual Review of Earth and Planetary Sciences, 26, 1 189–218. doi: 10.1146/annurev.earth.26.1.189.
  • Javoy, M. et al., 1991. Earth and Planetary Science Letters, 107, 3–4 598–611. doi: http://dx.doi.org/10.1016/0012-821X(91)90104-P.
  • Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
  • Moreira, M., 2013. Geochemical Perspectives, 2, 2 229–230. Mukhopadhyay, S., 2012. Nature, 486, 7401 101–104. Parman, S. W. et al., 2005. Nature, 437, 7062 1140–1143.

John Mclennan - Lectures 20-24, Mantle Variability and Melting

Key References

Integration of melt production in corner flow:

Mantle composition, mineralogy, melting behaviour:

Thermodynamics of melting – following the adiabat

References in additional to previous lecture