skip to primary navigationskip to content

Part II - Core 4 Climate

This is the previous reading list & will be updated as soon as possible

Part II Reading List - Core 4: Climate

Reading List for C4 by Subject - Lectures 1-6 by David Hodell

Deep Sea Sediments

General references:

Lisitzin, A. P. (1996), Oceanic Sedimentation: Lithology and Geochemistry, 400 pp., AGU, Washington, D. C., there is no copy of this in the library, available on line only doi:10.1029/SP044.

Kennett, J.P. (1982). Marine Geology, Chapters 13-16, pp. 396-573, Prentice Hall - in the short loan collection in the library office

Specific papers:

Anderson, D. M., Attenuation of millennial-scale events by bioturbation in marine sediments (2001), Paleoceanography, 16 (4), 352-357.

Francois, R., M. Frank, M. M. Rutgers van der Loeff, and M. P. Bacon (2004), 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary, Paleoceanography, 19, PA1018, doi:10.1029/2003PA000939.

Henderson, G.M., and Anderson, R.F., The U-series Toolbox for Paleoceanography (2003), Reviews in Mineralogy and Geochemistry January 52 ( 1), 493-531.

Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O., and Banta, G.T., 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences Inter-Research - Marine Ecology Progress Series 446 p285-302 

McCave, I.N., (2002), A poisoned chalice? Science 298, 1186-1187.

Teal, L.R., Bulling, M.T., Parker, E.R. and Solan, M., (2008), Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquatic Biology, 2, 207–218.


Methods of temperature and ice volume reconstruction in marine sediments


Oritz, J. and Mix, A. (1997). Comparison of Imbrie-Kipp transfer function and modern analog temperature estimates using sediment trap and core top foraminiferal faunas. Paleoceanography 12(2): 175-190.

Oxygen isotopes

Pearson, P.N., (2012). Oxygen isotopes in foraminifera: overview and historical review. In: Reconstruction Earth’s Deep-Time Climate – The State of the Art 2012, The Paleontological Society Papers, 18: 1-38.

Rohling, E.J. (2006) Oxygen isotope composition of seawater. In, Elias, S.A. (ed.) Encyclopedia of Quaternary Science (Vol. 3)., Elsevier, 1748-1756.


Lea, D.W. (2003) Elemental and Isotopic Proxies of Marine Temperatures, (this link is to the 2014 edition) pp. 365-390. In The Oceans and Marine Geochemistry (ed. H. Elderfield, ed.) Vol. 6 Treatise on Geochemistry (eds H.D. Holland and K.K. Tuerekian), Elsevier-Pergamon, Oxford.

Rosenthal, Y., B.K. Linsley, Mg/Ca and Sr/Ca Paleothermometery from Calcareous Marine Fossils, chapter in the Encyclopedia of Quaternary Sciences, Elsevier Ltd., 2006.

Clumped isotopes

Eiler, J.M., 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30: 3575–3588.


Herbert, T.D., 2003. Alkenone paleotemperature determinations. In: Treatise on Geochemistry, 6 (December 2003) , p. 391-432.


Schouten, S., Hopmans, E.C., Schefus, E., and Sinninghe Damste, 2002, Distributional variation in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?: Earth and Planetary Science Letters, 204: 265-274.


Milankovitch Theory of the Ice Ages

General reading:
Imbrie, J. and Imbrie, K.P., 1979. Ice Ages: Solving the Mystery. Harvard University Press, ISBN: 0-674-44075-7

Review paper:
Berger, A., Milankovitch theory and climate, Reviews in Geophysics, 26, 624-657, 1988.

Hodell, D.A., 2016. The smoking gun of the Ice Ages, Science 354 (6317), 1235-1236.

Classic papers:

Hays, J.D., Imbrie, J., and Shackleton, N.J., 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages, Science, 194,  1121-1132.

Imbrie, J., and J. Z. Imbrie, 1980. Modeling the climatic response to orbital variations, Science, 207, 943–953.

Paillard, D. (2001), Glacial cycles: Toward a new paradigm, Rev. Geophys., 39, 325 –346.

For an alternative view:

Wunsch, C., 2004, Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change Quaternary Science Reviews 23, 1001–1012.

Middle Pleistocene Transition

Chalk, T.B., Hain, M.P., Foster, G.L., Rohling, E.J., Sexton, P.F., Badger, M.P.S., cherry, S.G., Hasenfratz, A.P., Haug, G.H., Jaccard, S.L., Martinez-Garcia, M., Palike, H., Pancost, R.D., and Wilson, P.A., Causes of ice age intensification across the Mid-Pleistocene Transition, PNAS 2017 December, 114 (50) 13114-13119.

Clark, P. U., D. Archer, D. Pollard, J. D. Blum, J. A. Rial, V. Brovkin, A. C Mix, N. G. Pisias, and M. Roy (2006), The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric CO2, Quat. Sci. Rev, 25, 3150-3184.

Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D.A., and Piotrowski, A.M., 2012. Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science 337, 704-709.

Huybers, 2006, Early Pleistocene glacial cycles and the integrated summer insolation forcing, Science, 313,  pp. 508-511.

Raymo, M.E. and K.H. Nisancioglu, 2003, The 41 Kyr world: Milankovitch’s other unsolved mystery, Paleoceanography, v. 18, 10.1029/2002PA000791.

Raymo, M. E. and P. Huybers, 2008, Unlocking the mysteries of the Ice Ages, Nature, v. 451, p. 284-285.

Raymo, M. E., L. Lisiecki, and K. Nisancioglu, 2006, Plio-Pleistocene ice volume, Antarctic climate, and the global ?18O record, Science, v. 313, p. 492, doi: 10.1126/science.1123296.


Bailey, R.J., 2009. Cyclostratigraphic reasoning and orbital time calibration Terra Nova, 21, 340–351.

Hilgen, F.J., 1991. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters, 104: 226-244.

Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilsonk, D.S., 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature  400: 625-655.

Tuenter, E., Weber, S.L., Hilgen, F.J., Lourens, L.J., 2003. The response of the African summer monsoon to remote and local forcing due to precession and obliquity Global and Planetary Change 36: 219–235.

Weedon, G.P., 2003. Chapter 1 in Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles, Cambridge University Press, 259 pp.

Deepwater circulation Proxies

Carbon isotopes:

Schmittner, A., et al. (2017), Calibration of the carbon isotope composition (δ13C) of benthic foraminifera, Paleoceanography, 32, 512–530, doi:10.1002/2016PA003072.

Curry, W. B., and D. W. Oppo (2005), Glacial water mass geometry and the distribution of δ13C of CO2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi:10.1029/2004PA001021


Freeman, E. and Skinner, L. C. and Waelbroeck, C. and Hodell, D., 2016. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum. Nature Communications, 7:11998 DOI: 10.1038/ncomms11998

Skinner, L. C. and Primeau, F. and Freeman, E. and de la Fuente, M. and Goodwin, P. A. and Gottschalk, Julia and Huang, E. and McCave, I. N. and Noble, T. L. and Scrivner, A. E. (2017) Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nature Communications, 8. p. 16010. ISSN 2041-1723 DOI 10.1038/ncomms16010

Sortable silt:

McCave, I.N., Thornalley, D.J.R., and Hall, I.R., 2017. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the “Mud Current Meter”, Deep-Sea Research Part I, 127: 1-12.

McCave, I. N., and I. R. Hall (2006), Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophys. Geosyst., 7, Q10N05, doi:10.1029/2006GC001284.


J.F McManus, R Francois, JM Gherardi, LD Keigwin, S Brown-Leger, 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature 428 (6985), 834.

Jörg Lippold, Jens Grützner, Diane Winter, Yann Lahaye, Augusto Mangini, Marcus Christl,2009, Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation? , Geophysical Research Letters, 36, L12601, doi:10.1029/2009GL038068

Lippold, J et al. (2012): Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nature Geoscience, 5, 813-816

Nd isotopes:

Roberts, N.L., Piotrowski, A.M., McManus, J., Keigwin, L., (2010) Synchronous deglacial overturning and water mass source changes, Science, 327 (5961). pp. 75-78.

Howe J.N.W., Piotrowski, A.M., Mulitza, S., Noble T.L., Chiessi C.M., Bayon, G., (2016) North Atlantic Deep Water Production during the Last Glacial Maximum, Nature Communications 7, 11765.