skip to primary navigationskip to content
 

Option 8 - Planetary Chemistry and Evolution

This is the reading list to accompany the 2018-19 Part III course in Planetary Chemistry. It is taught by Helen Williams and Oli Shorttle

Planetary Chemistry and Evolution - Helen Williams and Oli Shorttle

Text Books

  • De Pater, I., & Lissauer, J. (2015). Planetary sciences / Imke de Pater, University of California, Berkeley & Delft University of Technology, and Jack J. Lissauer, NASA-Ames Research Center, & Stanford University. (Second ed.).
  • Lodders, Katharina, and Jr, Bruce Fegley. (2015). Chemistry of the Solar System. 1st. ed. (Online access restricted to designated PCs in the main UL + affiliate libraries)
  • Treatise on Geochemistry (2003/2014) - 2003 copy in the library, many papers can be found on-line

Light Reading 

  • Sagan, Carl (1980, latest ed. 2013) Cosmos

Lecture 1 - A (non)chondritic Earth (?)

1.1 Core Reading

Longer reads

Lecture 2 - Early Solar System Chronology

2.1 - Core Reading

  • Kruijer et al., Age of Jupiter inferred from the distinct genetics and formation times of meteorites. PNAS (2017)

2.3 - Further reading for presenters

Literature

  • Sanders and Scott, The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science 47 (12), 2170–2192 (2012) doi: 10.1111/maps.12002
  • Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon Not. R. astr. Soc. 180,  57-70
  • A.P. Boss, F.J. Ciesla, 2.3 - The Solar Nebula, Eds: Heinrich D. Holland, Karl K. Turekian, Treatise on Geochemistry (Second Edition), Elsevier, 2014, Pages 37-53, ISBN 9780080983004, doi:10.1016/B978-0-08-095975-7.00119-4.
  • McKeegan et al., The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind. Science 332 (6037), 1528-1532. (2011) doi:10.1126/science.1204636
  • Bertoldi et al., Dust emission from the most distant quasars. A&A 406, L55–L58 (2003) DOI: 10.1051/0004-6361:2003
  • Kroupa, On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231-246 (2001)
  • Van Kooten et al., Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. PNAS 113 (8), 2011-2016 (2016)
  • Young, Bayes' Theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the solar system. Astrophys. J. 826 (2), (2016)
  • Fischer and Valenti, The planet-metallicity correlation. Astrophys. J. 622, 1102-1117 (2005)
  • Yurimoto et al., Origin and Evolution of Oxygen Isotopic Compositions of the Solar System. Protostars and Planets V. 849-862.
  • Yurimoto et al., Oxygen Isotopes of Chondritic Components. Rev. Mineral Geochem. 68, 141-186 (2008)
  • Davis and McKeegan, 1.11 Short-Lived Radionuclides and Early Solar System Chronology. Ed. Holland & Turekian, Treatise on Geochemistry (2nd Edition), Elsevier, 361-395, (2014). ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00113-3 
  • Galy et al., The Formation of Chondrules at High Gas Pressures in the Solar Nebula. Science 290 (5497), 1751-1752 (2000). doi: 10.1126/science.290.5497.1751
  • Meng et al., The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. Astrophys. J. 836 (34), 1-19 (2017)
  • Lee et al., Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 3 (1), 109-112 (1976)
  • MacPherson, 1.3 - Calcium–Aluminum-Rich Inclusions in Chondritic Meteorites. Eds. Holland & Turekian, Treatise on Geochemistry (Second Edition), Elsevier, 139-179 (2014). ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00105-4.
  • Sugerman et al., Massive-Star Supernovae as Major Dust Factories. Science 313 (5784), 196-200. (2006) doi: 10.1126/science.112813.
  • Zinner, 1.4 - Presolar Grains. Eds. Holland & Turekian, Treatise on Geochemistry (Second Edition), 181-213. (2014) ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00101-7.
  • Krot et al., Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from refractory grains and inclusions. Meteorit. Planet. Sci. 47 (12), 1948-1979 (2012). doi: 10.1111/maps.12008
  • Testi et al., Dust Evolution in Protoplanetary Disks. In: Protostars and Planets VI, Ed. Beuther et al., University of Arizona Press, Tucson, 914 pp., p.339-361 (2014)
  • Savage and Sembach, Interstellar abundances from absorption-line observations with the Hubble Space TelescopeAnnu. Rev. Astron. Astrophys34, 279-329 (1996)
  • Ebel, Condensation of Rocky Material in Astrophysical Environments. In: Meteorites and the Early Solar System II, Ed. Lauretta and McSween Jr. University of Arizona Press, Tuscon, 943 pp., p.253-277 (2006)
  • Dwek and Scalo, the evolution of refractory interstellar grains in the solar neighbourhood. Astrophys. J. 239, 193-211 (1980)
  • Dorschner and Henning, Dust metamorphosis in the galaxy. The Astron. Astrophys. Rev. 6, 271-333 (1995)
  • Wasserburg et al., Short-lived nuclei in the early Solar System: Possible AGB sources. Nuclear Physics A 777, 5-69 (2006)
  • Sheffer et al., Ultraviolet detection of interstellar 12C17O and the CO isotopomeric ratios toward X Persei. Astrophys. J. 574, 171-174 (2002)
  • Connelly et al., The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science 338 (6107), 651-655 (2012). doi: 10.1126/science.1226919
  • Scott and Krot, 1.2 Chondrites and Their Components. Meteorites and Cosmochemical Processes, V1 Treatise on Geochemistry (2nd Edition), Ed: Davis, Elsevier, 65-137 (2014)
  • Boss, Temperature in protoplanetary disks. Annu. Rev. Earth Planet Sci. 26, 53-80 (1998)
  • Prantzos, On the "Galactic Habitable Zone". Space Sci. Rev. 135, 313-322 (2008). doi: 10.1007/s11214-007-9236-9
  • Heger et al., 2.1 Origin of the Elements. Treatise on Geochemistry (2nd ed.) Ed: Holland and Turekian, Elsevier, 1-14 (2014) ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00117-0

Longer reads


2.4 - Online resources

 3. Core Formation

 3.1 Core Reading

Literature

  • Andrault, D., Bolfan-Casanova, N., Nigro, G. L., Bouhifd, M. A., Garbarino, G., and Mezouar, M. (2011). Solidus and liquidus profiles of chondritic mantle: Implication for melting of the earth across its history. Earth and Planetary Science Letters, 304(1):251 – 259.
  • Bouhifd, M. and Jephcoat, A. P. (2003). The effect of pressure on partitioning of ni and co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth and Planetary Science Letters, 209(1):245 – 255.
  • Capobianco, C. J., Jones, J. H., and Drake, M. J. (1993). Metal-silicate thermochemistry at high temperature: Magma oceans and the “excess siderophile element” problem of the earth’s upper mantle. Journal of Geophysical Research: Planets, 98(E3):5433–5443.
  • Carlson, R. W., Garnero, E., Harrison, T. M., Li, J., Manga, M., McDonough, W. F., Mukhopadhyay, S., Romanowicz, B., Rubie, D., Williams, Q., and Zhong, S. (2014). How did early earth become our modern world? Annual Review of Earth and Planetary Sciences, 42(1):151–178.
  • Davies, G. F. (1985). Heat deposition and retention in a solid planet growing by impacts. Icarus, 63(1):45 – 68.
  • Elkins-Tanton, L. T. (2012). Magma Oceans in the Inner Solar System. Annual Review of Earth and Planetary Sciences, 40:113–139.
  • Rubie, D., Melosh, H., Reid, J., Liebske, C., and Righter, K. (2003). Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth and Planetary Science Letters, 205(3):239 – 255.
  • Rubie, D. C., Laurenz, V., Jacobson, S. A., Morbidelli, A., Palme, H., Vogel, A. K., and Frost, D. J. (2016). Highly siderophile elements were stripped from earth’s mantle by iron sulfide segregation. Science, 353(6304):1141–1144.
  • Wade, J. and Wood, B. (2005). Core formation and the oxidation state of the earth. Earth and Planetary Science Letters, 236(1):78 – 95.

 

4. Formation of the Moon

4.1 Core Reading 

Literature

5 - Planetary veneers and volatiles

5.1 - Core Reading

 


5.3 - Further reading for presenters

Literature

6. Mars: history and evolution

6.1 Core reading

  • Wade et al., The divergent fates of primitive hydrospheric water on Earth and Mars. Nature 552 391-394 (2017)

 Literature (also refer to previous seminars!)

  • Walsh et al., A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475 206-209 (2011)
  • Dale et al., Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements, Science 316 (2 012): 72-75
  • Wordsworth, R. The Early climate of Mars. Annual Reviews of Earth and Planetary Sciences. 44, 381-408 (2016)
  • Lammer et al., Outgassing History and Escape of the Martian Atmosphere and Water Inventory, Space Sciences Review 174 113–154 (2013)

7 - Giant planets at home and abroad

7.1 - Core Reading

  • Clarke et al., High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au, The Astrophysical Journal Letters (2018)

7.3 - Further reading for presenters

Longer reads 

  • Planetary Sciences: Second Edition. De Pater and Lissauer. Cambridge University Press. Chapter 13.
  • The Exoplanet Handbook. Perryman. Cambridge University Press.
  • Born of chaos. Batygin et al. Scientific American 2016.

8 - Making a habitable planet

8.1 - Core Reading

  • Rimmer et al. The origin of RNA precursors on exoplanets. Science Advances (2018)

8.3 - Further reading for presenters 

Literature

Longer reads

  • Langmuir & Broecker. How to build a habitable planet: the story of Earth from the Big Bang to Humankind. Princeton.

8.4 - Online Resources

  • www.exoplanets.org - Catalogue of discovered exoplanets. Enables online plotting of datasets and download of the data.
  • www.habitableplanet.org - Web resources for Langmuir and Broecker's book, including slides and figures.
  • http://hzgallery.org/ - List of planets specifically within their star's habitable zone. Includes plots of orbital characteristics of these systems and discussion of habitability criteria.
  • http://depts.washington.edu/naivpl/content/hz-calculator -calculator - Online tool for calculating the location of habitable zones around stars. An implementation of the Kopparapu et al. 2013/2014 work.