C1: Geophysics Core Course
Please contact the Earth Sciences Library if you have trouble accessing any of the material on this list.
Lecture 1 - James Jackson
-
Molnar, P. & Chen, W., 1982. Seismicity and mountain building, in: Mountain building processes (ed. Hsu, K.). Academic Press, 41-57. Available from ESC Library Office.
Lecture 2
- Avouac, J. et al., 2015. Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience 8. doi:10.1038/ngeo2518
- Jackson, J. A. et al., 1982. Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth and Planetary Science Letters 57, 377-397. doi:10.1016/0012-821X(82)90158-3
- Staff, U.S.G.S., 1990. The Loma Prieta, California, Earthquake: An Anticipated Event. Science 247, 286-293. doi:10.1126/science.247.4940.286
-
Talebian, M. et al., 2016. Active faulting within a megacity: the geometry and slip rate of the Pardisan thrust in central Tehran, Iran. Geophysical Journal International 207, 1688-1699. doi:10.1093/gji/ggw347
- Yielding, G., Jackson, J. A., King, G. C. P., Sinvhal, H., Vita-Finzi, C., Wood, R. M., 1981. Relations between surface deformation, fault geometry, seismicity, and rupture characteristics during the El Asnam (Algeria) earthquake of 10 October 1980. Earth and Planetary Science Letters 56, 287-304. doi:10.1016/0012-821X(81)90135-7
Lecture 3
-
Copley, A., 2017. The strength of earthquake-generating faults. Journal of the Geological Society. doi:10.1144/jgs2017-037
- Scholz, C. H., Aviles, C. A., Wesnousky, S. C. (1986) Scaling differences between large interplate and intraplate earthquakes. Bulletin of the Seismological Society of America 76, 65-70.
- Cowie, P. A. & Scholz, C. H., 1992. Displacement-length scaling relationship for faults: data synthesis and discussion. Journal of Structural Geology 14, 1149-1156. doi:10.1016/0191-8141(92)90066-6
- Mount, V. S. & Suppe, J. (1993) State of stress near the San Andreas Fault: implications for wrench tectonics. Geology 15, 1143-1146. doi:10.1130/0091-7613(1987)15<1143:SOSNTS>2.0.CO;2
- Copley, A., Avouac, J., Hollingsworth, J., Leprince, S., 2011. The 2001 Mw 7.6 Bhuj earthquake, low fault friction, and the crustal support of plate driving forces in India. Journal of Geophysical Research 116. doi:10.1029/2010JB008137
- Lockner, D. A., Morrow, C., Moore, D., Hickman, S., 2011. Low strength of deep San Andreas fault gouge from SAFOD core. Nature 472, 82-85. doi:10.1038/nature09927
- Craig, T. J., Copley, A., Middleton, T. A., 2014. Constraining fault friction in oceanic lithosphere using the dip angles of newly-formed faults at outer rises. Earth and Planetary Science Letters 392, 94-99. doi:10.1016/j.epsl.2014.02.024
Lecture 4
- Berberian, M. et al., 2001. The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Geophysical Journal International 146, 371-398. doi:10.1046/j.1365-246x.2001.01459.x
- Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138-142. doi:10.1038/364138a0
- Wright, T., Parsons, B., Fielding, E., 2001. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry. Geophys. Res. Lett. 28, 2117-2120. doi:10.1029/2000GL012850
Lecture 5
- England, P. & Molnar, P., 1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophysical Journal International 130, 551-582. doi:10.1111/j.1365-246X.1997.tb01853.x
- Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., Ghafory-Ashtiani, M., 2005. Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys. J. Int. 160, 217-226. doi:10.1111/j.1365-246X.2004.02465.x
- Melgar, D., Crowell, B.W., Bock, Y., Haase, J.S., 2013. Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy. Geophys. Res. Lett. 40, 2963-2968. doi:10.1002/grl.50590
- Stevens, V. L. & Avouac, J., 2015. Interseismic coupling on the main Himalayan thrust. Geophys. Res. Lett. 42, 2015GL064845. doi:10.1002/2015GL064845
Lecture 6
-
McKenzie, D. et al., 2005. Thermal structure of oceanic and continental lithosphere. EPSL 233, 337-349. doi:10.1016/j.epsl.2005.02.005
-
Crosby, A. G. et al., 2006. The relationship between age, depth, and gravity in the oceans. Geophysical Journal International 166, 553-573. doi:10.1111/j.1365-246X.2006.03015.x
-
Weller, O. M. et al., 2019. The relationship between mantle potential temperature and oceanic lithosphere buoyancy. EPSL 518, 86–99. doi:10.1016/j.epsl.2019.05.005
-
Jackson, J. A. et al., 2008. New views on the structure and rheology of the lithosphere. J. Geol. Soc. London 165, 453-465. doi:10.1144/0016-76492007-109
Lecture 7
- Gourmelen, N. & Amelung, F., 2005. Postseismic Mantle Relaxation in the Central Nevada Seismic Belt. Science 310, 1473-1476. doi:10.1126/science.1119798
- Hirth, G. & Kohlstedt, D., 2004. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists, in: Inside the Subduction Factory, (ed. Eiler, J.). American Geophysical Union, 83-105.
- Lambeck, K., Smither, C., Johnston, P., 1998. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophysical Journal International 134, 102144. doi:10.1046/j.1365-246X.1998.00541.x
- Mackwell, S. J., Zimmerman, M. E., Kohlstedt, D. L., 1998. High-temperature deformation of dry diabase with application to tectonics on Venus. Journal of Geophysical Research 103, 975. doi:10.1029/97JB02671
- Stocker, R. L. & Ashby, M. F., 1973. On the rheology of the upper mantle. Rev. Geophys. 11, 391426. doi:10.1029/RG011i002p00391
- Turcotte, D. L. & Schubert G., 2016. Geodynamics. Cambridge Univ. Press. Available from ESC Library Office.
Lecture 8
- Alisic, L., Gurnis, M., Stadler, G., Burstedde, C., Ghattas, O., 2012. Multi-scale dynamics and rheology of mantle flow with plates. J. Geophys. Res. 117, B10402. doi:
- Copley, A., Avouac, J., Royer, J., 2010. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. Journal of Geophysical Research 115. doi:10.1029/2009JB006634
- Forsyth, D. & Uyedaf, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal of the Royal Astronomical Society 43, 163-200. doi:10.1111/j.1365-246X.1975.tb00631.x
- Richter, F. & McKenzie, D., 1978. Simple plate models of mantle convection. J. Geophys. 44, 441-471. Available from the Reprint Collection No. 478-479 in the ESC Library Office.
Lecture 9
- Brace, W. F. & Kohlstedt, D. L., 1980. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 85, 6248-6252. doi:10.1029/JB085iB11p06248
- Chen, W. & Molnar, P., 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. 88, 4183-4214. doi:10.1029/JB088iB05p04183
- Craig, T. J. et al., 2012. Thermal and tectonic consequences of India underthrusting Tibet. Earth and Planetary Science Letters. doi.org/10.1016/j.epsl.2012.07.010
- Jackson, J. A., McKenzie, D., Priestley, K., Emmerson, B., 2008. New views on the structure and rheology of the lithosphere. Journal of the Geological Society 165, 453-465. doi:10.1144/0016-76492007-109
- Maggi, A., Jackson, J. A., McKenzie, D., Priestley, K., 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology 28, 495-498. doi:10.1130/0091-7613(2000)282.0.CO;2
Lectures 10-13 - Nicky White
- Fowler, C. M. R., 1990. The Solid Earth: An Introduction to Global Geophysics. Second Edition, 16th printing. Cambridge Univ. Press. Available from ESC Library Office.
- Kennett, B. L. N., 2001. The Seismic Wavefield, Vol. 1: Introduction and Theoretical Development. Cambridge Univ. Press. Available from ESC Library Office and Bullard Labs.
- Kennett, B. L. N., 2002. The Seismic Wavefield, Vol. 2: Interpretation of Seismograms on Regional and Global Scales. Cambridge Univ. Press. Available from ESC Library Office and Bullard Labs.
- Lay, T. & Wallace, T. C., 1995. Modern Global Seismology. Academic Press. Available from Bullard Labs.
- Mooney, W. D., Laske, G., Masters, T. G., 1998. CRUST 5.1: A global crustal model at 5° × 5°. Journal of Geophysical Research: Solid Earth 103(B1), 727–747. doi:10.1029/97JB02122
- Shearer, P. M., 1999. Introduction to Seismology. Cambridge Univ. Press. Available as an eBook.
- Zhao, W. et al. 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophysical Journal International 145(2), 486–498. doi:10.1046/j.0956-540x.2001.01402.x
Lectures 14-16 - Nick Rawlinson
- Lay, T. & Wallace, T. C., 1995. Modern Global Seismology. Academic Press. Available from Bullard Labs.
- Rawlinson, N., Hauser, J., Sambridge, M., 2008. Seismic ray tracing and wavefront tracking in laterally heterogeneous media. Advances in Geophysics 49, 203–273. doi:10.1016/S0065-2687(07)49003-3
- Stein, S. & Wysession, M., 2003. An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell. Available from ESC Library Office and Bullard Labs.
Lecture 17
- Fichtner, A., Kennett, B. L. N., Igel, H., Bunge, H., 2009. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophysical Journal International 179(3), 1703–1725. doi:10.1111/j.1365-246X.2009.04368.x
- Fishwick, S. & Rawlinson, N., 2012. 3-D Structure of the Australian lithosphere from evolving seismic datasets. Australian Journal of Earth Sciences 59(6), 809–826. doi:10.1080/08120099.2012.702319
- Hill, G. J. et al., 2009. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nature Geoscience 2(11), 785–789. doi:10.1038/ngeo661
- Kahraman, M. et al., 2015. Crustal-scale shear zones and heterogeneous structure beneath the North Anatolian Fault Zone, Turkey, revealed by a high-density seismometer array. EPSL 430, 129–139. doi:10.1016/j.epsl.2015.08.014
- Li, C., van der Hilst, R. D., Engdahl, E. R., Burdick, S., 2008. A new global model for P wave speed variations in Earth's mantle. G-cubed 9(5), Q05018. doi:10.1029/2007GC001806
- Pilia, S. et al., 2015. Linking mainland Australia and Tasmania using ambient seismic noise tomography: Implications for the tectonic evolution of the east Gondwana margin. Gondwana Research 28(3), 1212–1227. doi:10.1016/j.gr.2014.09.014
- Rawlinson, N., Pozgay, S., Fishwick, S., 2010. Seismic tomography: A window into deep Earth. PEPI 178(3–4), 101–135. doi:10.1016/j.pepi.2009.10.002
Lecture 18
- Cohen, B. E., Mark, D. F., Fallon, S. J., Stephenson, P. J., 2017. Holocene-Neogene volcanism in northeastern Australia: Chronology and eruption history. Quaternary Geochronology 39, 79–91. doi:10.1016/j.quageo.2017.01.003
- Conrad, C. P., Bianco, T. A., Smith, E. I., Wessel, P., 2011. Patterns of intraplate volcanism controlled by asthenospheric shear. Nature Geoscience 4(5), 317–321. doi:10.1038/ngeo1111
- Davies, D. R., Rawlinson, N., Iaffaldano, G., Campbell, I. H., 2015. Lithospheric controls on magma composition along Earth’s longest continental hotspot track. Nature 525, 511–514. doi:10.1038/nature14903
- Davies, D. R. & Rawlinson, N., 2014. On the origin of recent intraplate volcanism in Australia. Geology 42(12), 1031–1034. doi:10.1130/G36093.1
- Rawlinson, N., Davies, D. R., Pilia, S., 2017. The mechanisms underpinning Cenozoic intraplate volcanism in eastern Australia: Insights from seismic tomography and geodynamic modeling. Geophysical Research Letters 44(19), 9681–9690. doi:10.1002/2017GL074911
Lecture 19 - John Rudge
- Bercovici, D., 2015. Mantle Dynamics: An Introduction and Overview, in: Treatise on Geophysics vol. 7, 1–22. doi:10.1016/B978-0-444-53802-4.00125-1. Access only available from an affiliated library, i.e., the Betty & Gordon Moore Library or the Haddon Library.
- Davies, G. F., 1999. Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge Univ. Press. doi:10.1017/CBO9780511605802. Available as an eBook.
- Davies, G. F., 2011. Mantle Convection for Geologists. Cambridge Univ. Press. doi:10.1017/CBO9780511973413. Available as an eBook.
- McKenzie, D. P., 1983. The Earth’s Mantle. Scientific American 249(3), 66–78. doi:10.1038/scientificamerican0983-66
- McKenzie, D. P. & Richter, F., 1976. Convection currents in the Earth’s mantle. Scientific American 235(5), 72–89. https://doi.org/10.1038/scientificamerican1176-72.
- Rose, I. R., Interactive Earth, URL:http://ian-r-rose.github.io/interactive_earth/
- Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge Univ. Press. doi:10.1017/CBO9780511612879. Available as an eBook.
Lecture 20
- Crosby, A. G. & McKenzie, D., 2009. An analysis of young ocean depth, gravity and global residual topography. Geophysical Journal International 178(3), 1198–1219. doi:10.1111/j.1365-246X.2009.04224.x
- Crosby, A. G., McKenzie, D., Sclater, J. G., 2006. The relationship between depth, age and gravity in the oceans. Geophysical Journal International 166(2), 553–573. doi:10.1111/j.1365-246X.2006.03015.x
- Hoggard, M. J., White, N., Al-Attar, D., 2016. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geoscience 9(6), 456–463. doi:10.1038/ngeo2709
- Jones, S. M., Lovell, B., Crosby, A. G., 2012. Comparison of modern and geological observations of dynamic support from mantle convection. Journal of the Geological Society 169(6), 745–758. doi:10.1144/jgs2011-118
Lecture 21
- Allègre, C. J., Hofmann, A., O’Nions, K., 1996. The argon constraints on mantle structure. Geophysical Research Letters 23(24), 3555–3557. doi:10.1029/96GL03373
- Bercovici, D., Schubert, G., Tackley, P. J., 1993. On the penetration of the 660 km phase change by mantle downflows. Geophysical Research Letters 20(23), 2599–2602. doi:10.1029/93GL02691
- Ding, X. & Grand, S. P., 1994. Seismic structure of the deep Kurile Subduction Zone. Journal of Geophysical Research: Solid Earth 99(B12), 23767–23786. doi:10.1029/94JB02130
- Fukao, Y. & Obayashi, M., 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth 118(11), 5920–5938. doi:10.1002/2013JB010466
- Galer, S. J. G., Goldstein, S. L., O’Nions, R. K., 1989. Limits on chemical and convective isolation in the Earth’s interior. Chemical Geology 75(4), 257–290. https://doi.org/10.1016/0009-2541(89)90001-6
- Grand, S. P., 1994. Mantle shear structure beneath the Americas and surrounding oceans. Journal of Geophysical Research: Solid Earth 99(B6), 11591–11621. https://doi.org/10.1029/94JB00042
- Hofmann, A. W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229. doi:10.1038/385219a0
- Isacks, B. & Molnar, P., 1969. Mantle earthquake mechanisms and the sinking of the lithosphere. Nature 223, 1121–1124. doi:10.1038/2231121a0
- Kennett, B. L. N., Widiyantoro, S., van der Hilst, R. D., 1998. Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. Journal of Geophysical Research: Solid Earth 103(B6), 12469–12493. doi:10.1029/98JB00150
- Lundgren, P. & Giardini, D., 1994. Isolated deep earthquakes and the fate of subduction in the mantle. Journal of Geophysical Research 99(B8), 15833-15842. doi:10.1029/94JB00038
- Rudge, J. F., Maclennan, J., Stracke, A., 2013. The geochemical consequences of mixing melts from a heterogeneous mantle. Geochimica et Cosmochimica Acta 114, 112–143. https://doi.org/10.1016/j.gca.2013.03.042
- White, W. M., 2015. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology 419, 10–28. doi:10.1016/j.chemgeo.2015.09.026
- de Wit, R. W. L., Trampert, J., van der Hilst, R. D., 2012. Toward quantifying uncertainty in travel time tomography using the null-space shuttle. Journal of Geophysical Research: Solid Earth 117(B3), B03301. doi:10.1029/2011JB008754.
- Zindler, A. & Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences 14(1), 493–571. doi:10.1146/annurev.ea.14.050186.002425
Lecture 22
- McKenzie, D., 1994. The relationship between topography and gravity on Earth and Venus. Icarus 112(1), 55–88. doi:10.1006/icar.1994.1170
- McKenzie, D., Barnett, D. N., Yuan, D., 2002. The relationship between Martian gravity and topography. EPSL 195(1–2), 1–16. doi:10.1016/S0012-821X(01)00555-6
- McKenzie, D., Ford, P. G., Liu, F., Pettengill, G. H., 1992. Pancakelike Domes on Venus. Journal of Geophysical Research 97(E10), 15967-15976. doi:10.1029/92JE01349
- Nimmo, F. & McKenzie, D., 1998. Volcanism and tectonics on Venus. Annual Review of Earth and Planetary Sciences 26(1), 23–51. doi:10.1146/annurev.earth.26.1.23
Lecture 23 - David Al-Attar
- Al-Attar, D., Woodhouse, J. H., Deuss, A., 2012. Calculation of normal mode spectra in laterally heterogeneous Earth models using an iterative direct solution method. Geophysical Journal International 189(2), 1038–1046. doi:10.1111/j.1365-246X.2012.05406.x
- Bozdağ, E. et al., 2016. Global adjoint tomography: first-generation model. Geophysical Journal International 207(3) 1739–1766. doi:10.1093/gji/ggw356
- Deuss, A. & Woodhouse, J., 2001. Seismic observations of splitting of the mid-transition zone discontinuity in Earths mantle. Science 294, 354-357. doi:10.1126/science.1063524
- French, S. W. & Romanowicz, B. A., 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophysical Journal International 199(3), 1303–1327. doi:10.1093/gji/ggu334
- Fukao, Y. & Obayashi, M., 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth 118(11), 5920–5938. doi:10.1002/2013JB010466
- Liu, Q. & Tromp, J., 2008. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods. Geophysical Journal International 174(1), 265–286. doi:10.1111/j.1365-246X.2008.03798.x
- Ritsema, J. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928. doi:10.1126/science.286.5446.1925
- Woodhouse, J. & Giardini, D., 1985. Inversion for the splitting function of isolated low order normal mode multiplets. EOS 66, 300. doi:10.1029/EO066i018p00233. (abstract)
- Woodhouse, J. H. & Dziewonski, A. M., 1984. Mapping the upper mantle: Three-dimensional modeling of Earth structure by inversion of seismic waveforms. Journal of Geophysical Research: Solid Earth 89(B7), 5953–5986. doi:10.1029/JB089iB07p05953.
Lecture 24
- Austermann, J., Mitrovica, J. X., Huybers, P., Rovere, A., 2017. Detection of a dynamic topography signal in last interglacial sea-level records. Science Advances 3(7), e1700457. doi:10.1126/sciadv.1700457
- Crawford, O. et al., 2018. Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity. Geophysical Journal International 214(2), 1324–1363. doi:10.1093/gji/ggy184
- Hoggard, M. J., White, N., Al-Attar, D., 2016. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geoscience 9(6), 456–463. doi:10.1038/ngeo2709
- Zhu, H., Bozdag, E., Peter, D., Tromp, J., 2012. Structure of the European upper mantle revealed by adjoint tomography. Nature Geoscience 5, 493-498. doi:10.1038/ngeo1501