skip to content

Reading list for Part III Option 6 lectures - Evolution and Composition of the Earth's Mantle. Created 2019.

Option 6 - Sally Gibson

* = highly recommended as the most appropriate available book for O6


Available from the library office

  • Davies, G.F.D. 2011. Mantle convection for geologists. Cambridge University Press
  • Dickin, A.P. Radiogenic Isotope Geochemistry. Cambridge University Press
  • *Gill, R. 2010. Igneous rocks & processes. Wiley-Blackwell
  • *Treatise on Geochemistry 2 (2014): The mantle & core (Elsevier) - don't have this in the library
  • *Rollinson, H., 1993. Using geochemical data. Pearson
  • MacKenzie, Donaldson & Guilford, Atlas of igneous rocks and their textures.
  • Nixon, P.H., 1987. Mantle Xenoliths

Available from the library office.

  • Shaw, D.M., 2007. Trace elements in magmas: A theoretical treatment. Cambridge University Press
  • White, W.M., 2013. Geochemistry. Wiley


  • *Deer Howie & Zussman,  An introduction to the rock forming minerals

Lecture 1


Lecture 2



  • *Demouchy, S & Bolfan Casanova, N. (2016). Distribution and Transport of Hydrogen in the Lithospheric Mantle: A Review. Lithos 240, 402-425.
  • *Doucet et al., (2014). High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochimica Cosmochimica Acta 137, 159-187.
  • Jean, M. M., Taylor, L. A., Howarth, G. H. , Peslier, A. H. , Fedele, L., Bodnar, R. J., Guan, Y., Doucet, L. S., Ionov, D. A. , Logvinova, A. M., Golovin, A. V., Sobolev, N. V. (2016) Olivine inclusions in Siberian diamonds and mantle xenoliths: Contrasting water and trace element contents. Lithos, 265, 31-41.
  • Pearson,  D.  G.  and  Wittig,  N.  (2014).  The  formation  and  evolution  of  the  subcontinental  mantle lithosphere -evidence from mantle xenoliths. Treatise of Geochemistry, Volume 3: The Mantle and Core, Chapter 3.6, 255–292.
  • *Peslier, A.H., Woodland, A.B., Bell, D.R. & Lazarov, M., 2010. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78-81.


Lecture 3


  • Arndt, N.T., Guitreau, M., Bouiller, A.M., Le Roex, A. Tommasi, A. Cordier, P. Sobolev, A. 2010. Olivine, and the origin of kimberlite. J Petrology 51, 573-602.
  • Brett, R.C., Russell, J.K., Moss, S., 2009. Origin of olivine in kimberlite: phenocryst or impostor? Lithos, 112, 201-212.
  • Bussweiler, Y, Foley, S.F., PrevelicD., & Jacob, D.E., 2015. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220-223, 238-252.
  • Dawson, J. B., 1994. Quaternary kimberlitic volcanism on the Tanzania Craton. Contributions to Mineralogy and Petrology, 116(4), 473.
  • Giuliani, A., 2018. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 312-313, 322- 342.


Lecture 4


  • Brey, G., Bulatov, VK, Girnis, AV., Lahaye, Y., 2008. Experimental Melting of Carbonated Peridotite at 6–10 GPa. Journal of Petrology 49, 797.
  • *Gudfinnson GH and Presnall DC. (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilitic, basaltic, picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. Journal of Petrology 46, 81646–1659.
  • McKenzie, D.P., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet. Sci. Lett. 95, 53-72.
  • *Pearson, G.D., 2014. F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans & L. Vincze. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224.
  • *Tachibana, Y., Kaneoka, I., Gaffney, A. & Upton, B. (2006). Ocean island basalt-like source of kimberlite magmas from West Greenland revealed by high 3 He/4 He ratios. Geology 34, 273-276.


Lecture 5


  • Carbonatites, 1989. (ed. K.Bell), Unwin Hyman, 618 pp
  • *Dawson, J.B., Pinkerton, H., Pyle, D.M. & Nyamweru, C., 1994. June 1993 eruption of Oldoinyo Lengai, Tanzania: exceptionally viscous and large carbonatite lava flows and evidence for coexisting silicate and carbonate magmas. Geology 22, 799-802.
  • Bailey, D.K., 1993. Carbonatite magmas. J. Geol. Soc. Lond. 150, 637-651
  • Bell, K. & Tilton, G.R. 2001. Nd, Pb and Sr Isotopic Compositions of East African Carbonatites: Evidence for Mantle Mixing and Plume Inhomogeneity. J. Petrology 42: 1927-1945.
  • *Jones, A.P., Genge, M., & Carmody, L., 2013. Carbonate melts and carbonatites.
  • Mitchell, R. & Dawson, J.B., 2008. The 24th September 2007 ash eruption of the carbonatite volcano Oldoinyo Lengai, Tanzania: mineralogy of the ash and implications for formation of a new hybrid magma type. Mineralogical Magazine 71, 483-492
  • J. Petrology 1998, volume 39 no.s 11 to 12: special volume on carbonatites for the enthusiasts!


Lecture 6


  • Dalton, J.A. & Wood, B.J., 1993. The composition of primary carbonate melts and their evolution through wall rock reaction in the mantle. Earth Planet Sci. Lett 119, 511-525.
  • *Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M. & Withers, A.C. (2009). Trace element partitioning between garnet lherzolite and carbonatite at 6.6. and 8.6 GPa with applications to the geochemistry of the mantle and of mantlederived melts. Chemical geology 262, 57-77.
  • *Green, D.H. & Wallace, M.F., 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature 356, 459-462.
  • Hoernle K., Tilton, G., Le Bas, M.J., Duggen, S & Garbe-Schonberg, D., 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol. 142, 520-542.
  • *Kelemen, P.D. & Manning, C.E. (2015). Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.
  • Kjarsgaard B., 1998. Phase relations of a carbonated high-CaO nephelinite at 0·2 and 0·5 GPa J. Petrology 39, 2061-2075
  • Kjarsgaard B. & Hamilton, 1989. Genesis of carbonatites by Immiscibility. In: Carbonatites (ed Bell), 388-404.
  • Veksler, I.V., Nielsen, T.F.D. & Sokolov, S.V., 1998. Mineralogy of crystallised melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J. Petrology 39, 2015-2031.
  • *Wallace, M.F. & Green, D.H., 1988. An experimental determination of primary carbonatite magma composition. Nature 335, 343-346.


Lecture 7


  • Dasgupta, R.D., Mallik, A., Tsuno, K., Withers, A., Hirth, G. & Hirschmann, M.M., 2013. Carbon dioxide rich silicate melt in the Earth’s upper mantle. Doi:10.1038/nature11731
  • *Dasgupta, R.D. & Hirschman, M.M., 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Science Letters 298, 1-13.
  • Gibson, S.A. & Richards, M.A., 2018. Delivery of deep-sourced, volatile-rich plume material to the global ridge system. Earth Planet Science Letters 499, 205-218.
  • Mata, J., Moreira, M., Doucelance, R., Ader, M. & Silva, L.C., 2010. Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance. Earth Planet Science Letters 291, 70-83
  • Miller, W.G.R., Holland, T.J.B. & Gibson, S.A., 2016. Garnet and spinel oxybarometers: New internally consistent multi-equilibria models with applications to the oxidation state of the lithospheric mantle. J. Petrology 57, 1199-1222.
  • *Stagno, V., Ojwang, D., McCammon, C.A. & frost, D.J., 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84-88.