skip to content
 

This is the suggested reading list for the 2018-19 course 'Records of Environmental Change in Earth History', lectured by Alex Liu.

Option 4

Lecture 1

  • Butterfield, Nicholas J. 2015. “The Neoproterozoic.” Current Biology 25 (19): R859–63. https://doi.org/10.1016/j.cub.2015.07.021.
  • Erwin, Douglas H. 1992. “A Preliminary Classification of Evolutionary Radiations.” Historical Biology 6 (2): 133–47. https://doi.org/10.1080/10292389209380423.
  • Jablonski, David. 1994. “Extinctions in the Fossil Record.” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 344 (1307): 11–17. https://doi.org/10.1098/rstb.1994.0045.
  • Krug, Andrew Z., and Mark E. Patzkowsky. 2015. “Phylogenetic Clustering of Origination and Extinction across the Late Ordovician Mass Extinction.” Edited by Matt Friedman. PLOS ONE 10 (12): e0144354. https://doi.org/10.1371/journal.pone.0144354.
  • McGhee, George R., Matthew E. Clapham, Peter M. Sheehan, David J. Bottjer, and Mary L. Droser. 2013. “A New Ecological-Severity Ranking of Major Phanerozoic Biodiversity Crises.” Palaeogeography, Palaeoclimatology, Palaeoecology 370 (January): 260–70. https://doi.org/10.1016/j.palaeo.2012.12.019.
  • Muschick, Moritz, Adrian Indermaur, and Walter Salzburger. 2012. “Convergent Evolution within an Adaptive Radiation of Cichlid Fishes.” Current Biology 22 (24): 2362–68. https://doi.org/10.1016/j.cub.2012.10.048.
  • Raup, D. M., and J. J. Sepkoski. 1984. “Periodicity of Extinctions in the Geologic Past.” Proceedings of the National Academy of Sciences 81 (3): 801–5. https://doi.org/10.1073/pnas.81.3.801.
  • Self, S, Anja Schmidt, and TA Mather. 2014. Emplacement Characteristics, Time Scales, and Volcanic Gas Release Rates of Continental Flood Basalt Eruptions on Earth. Vol. 505. https://doi.org/10.1130/2014.2505(16).
  • Wignall, P.B. 2001. “Large Igneous Provinces and Mass Extinctions.” Earth-Science Reviews 53 (1–2): 1–33. https://doi.org/10.1016/S0012-8252(00)00037-4.

 

Lecture 2

  • Baker, M. E. 2006. “The Genetic Response to Snowball Earth: Role of HSP90 in the Cambrian Explosion.” Geobiology 4 (1): 11–14. https://doi.org/10.1111/j.1472-4669.2006.00067.x.
  • Bobrovskiy, Ilya, Janet M. Hope, Andrey Ivantsov, Benjamin J. Nettersheim, Christian Hallmann, and Jochen J. Brocks. 2018. “Ancient Steroids Establish the Ediacaran Fossil Dickinsonia as One of the Earliest Animals.” Science 361 (6408): 1246–49. https://doi.org/10.1126/science.aat7228.
  • Boyle, R. A., T. W. Dahl, A. W. Dale, G. A. Shields-Zhou, M. Zhu, M. D. Brasier, D. E. Canfield, and T. M. Lenton. 2014. “Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation.” Nature Geoscience 7 (9): 671–76. https://doi.org/10.1038/ngeo2213.
  • Boyle, R. A., T. M. Lenton, and H. T. P. Williams. 2007. “Neoproterozoic ‘Snowball Earth’ Glaciations and the Evolution of Altruism.” Geobiology 5 (4): 337–49. https://doi.org/10.1111/j.1472-4669.2007.00115.x.
  • Briggs, Derek E.G. 2015. “The Cambrian Explosion.” Current Biology 25 (19): R864–68. https://doi.org/10.1016/j.cub.2015.04.047.
  • Butterfield, N. J. 2018. “Oxygen, Animals and Aquatic Bioturbation: An Updated Account.” Geobiology 16 (1): 3–16. https://doi.org/10.1111/gbi.12267.
  • Butterfield, Nicholas J. 2011. “Animals and the Invention of the Phanerozoic Earth System.” Trends in Ecology & Evolution 26 (2): 81–87. https://doi.org/10.1016/j.tree.2010.11.012.
  • Butterfield, Nicholas J. 2015. “The Neoproterozoic.” Current Biology 25 (19): R859–63. https://doi.org/10.1016/j.cub.2015.07.021.
  • Campbell, Ian H., and Richard J. Squire. 2010. “The Mountains That Triggered the Late Neoproterozoic Increase in Oxygen: The Second Great Oxidation Event.” Geochimica et Cosmochimica Acta 74 (15): 4187–4206. https://doi.org/10.1016/j.gca.2010.04.064.
  • Corsetti, Frank A. 2015. “Research Focus: Life During Neoproterozoic Snowball Earth.” Geology 43 (6): 559–60. https://doi.org/10.1130/focus062015.1.
  • Cui, Huan, Alan J. Kaufman, Shuhai Xiao, Chuanming Zhou, and Xiao-Ming Liu. 2017. “Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane-Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China.” Chemical Geology 450 (February): 59–80. https://doi.org/10.1016/j.chemgeo.2016.12.010.
  • Cunningham, John A., Kelly Vargas, Zongjun Yin, Stefan Bengtson, and Philip C. J. Donoghue. 2017. “The Weng’an Biota (Doushantuo Formation): An Ediacaran Window on Soft-Bodied and Multicellular Microorganisms.” Journal of the Geological Society 174 (5): 793–802. https://doi.org/10.1144/jgs2016-142.
  • dos Reis, Mario, Yuttapong Thawornwattana, Konstantinos Angelis, Maximilian J. Telford, Philip C.J. Donoghue, and Ziheng Yang. 2015. “Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales.” Current Biology 25 (22): 2939–50. https://doi.org/10.1016/j.cub.2015.09.066.
  • Dunn, Frances S., Alexander G. Liu, and Philip C. J. Donoghue. 2018. “Ediacaran Developmental Biology: Ediacaran Developmental Biology.” Biological Reviews 93 (2): 914–32. https://doi.org/10.1111/brv.12379.
  • Dunn, FS, and Alexander Liu. 2017. “Fossil Focus: The Ediacaran Biota.” Apollo - University of Cambridge Repository, January. https://doi.org/10.17863/cam.7045.
  • Erwin, D. H., M. Laflamme, S. M. Tweedt, E. A. Sperling, D. Pisani, and K. J. Peterson. 2011. “The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals.” Science 334 (6059): 1091–97. https://doi.org/10.1126/science.1206375.
  • Erwin, Douglas H., and Sarah Tweedt. 2012. “Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa.” Evolutionary Ecology 26 (2): 417–33. https://doi.org/10.1007/s10682-011-9505-7.
  • Halverson, Galen P., Paul F. Hoffman, Daniel P. Schrag, Adam C. Maloof, and A. Hugh N. Rice. 2005. “Toward a Neoproterozoic Composite Carbon-Isotope Record.” Geological Society of America Bulletin 117 (9): 1181. https://doi.org/10.1130/B25630.1.
  • Hoffman, P. F. 1998. “A Neoproterozoic Snowball Earth.” Science 281 (5381): 1342–46. https://doi.org/10.1126/science.281.5381.1342.
  • Hoffman, P. F. . 2016. “Cryoconite Pans on Snowball Earth: Supraglacial Oases for Cryogenian Eukaryotes?” Geobiology 14 (6): 531–42. https://doi.org/10.1111/gbi.12191.
  • Johnston, D.T., S.W. Poulton, T. Goldberg, V.N. Sergeev, V. Podkovyrov, N.G. Vorob’eva, A. Bekker, and A.H. Knoll. 2012. “Late Ediacaran Redox Stability and Metazoan Evolution.” Earth and Planetary Science Letters 335–336 (June): 25–35. https://doi.org/10.1016/j.epsl.2012.05.010.
  • Laflamme, Marc, Simon A.F. Darroch, Sarah M. Tweedt, Kevin J. Peterson, and Douglas H. Erwin. 2013. “The End of the Ediacara Biota: Extinction, Biotic Replacement, or Cheshire Cat?” Gondwana Research 23 (2): 558–73. https://doi.org/10.1016/j.gr.2012.11.004.
  • Lenton, Timothy M., Richard A. Boyle, Simon W. Poulton, Graham A. Shields-Zhou, and Nicholas J. Butterfield. 2014. “Co-Evolution of Eukaryotes and Ocean Oxygenation in the Neoproterozoic Era.” Nature Geoscience 7 (4): 257–65. https://doi.org/10.1038/ngeo2108.
  • Li, Zheng-Xiang, David A.D. Evans, and Galen P. Halverson. 2013. “Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland.” Sedimentary Geology 294 (August): 219–32. https://doi.org/10.1016/j.sedgeo.2013.05.016.
  • McKenzie, N. Ryan, Nigel C. Hughes, Benjamin C. Gill, and Paul M. Myrow. 2014. “Plate Tectonic Influences on Neoproterozoic–early Paleozoic Climate and Animal Evolution.” Geology 42 (2): 127–30. https://doi.org/10.1130/G34962.1.
  • Moczydlowska, M. 2008. “The Ediacaran Microbiota and the Survival of Snowball Earth Conditions.” Precambrian Research 167 (1–2): 1–15. https://doi.org/10.1016/j.precamres.2008.06.008.
  • Narbonne, G.M., S. Xiao, G.A. Shields, and J.G. Gehling. 2012. “The Ediacaran Period.” In The Geologic Time Scale, 413–35. Elsevier. https://doi.org/10.1016/B978-0-444-59425-9.00018-4.
  • Nielsen, Claus. 2008. “Six Major Steps in Animal Evolution: Are We Derived Sponge Larvae?: Six Major Steps in Animal Evolution.” Evolution & Development 10 (2): 241–57. https://doi.org/10.1111/j.1525-142X.2008.00231.x.
  • Paulsen, Timothy, Chad Deering, Jakub Sliwinski, Olivier Bachmann, and Marcel Guillong. 2017. “Evidence for a Spike in Mantle Carbon Outgassing during the Ediacaran Period.” Nature Geoscience 10 (12): 930–34. https://doi.org/10.1038/s41561-017-0011-6.
  • Seilacher, Adolf. 1989. “Vendozoa: Organismic Construction in the Proterozoic Biosphere.” Lethaia 22 (3): 229–39. https://doi.org/10.1111/j.1502-3931.1989.tb01332.x.
  • Shields-Zhou, Graham, and Lawrence Och. 2011. “The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences.” GSA Today 21 (3): 4–11. https://doi.org/10.1130/GSATG102A.1.
  • Shumlyanskyy, Leonid, Anna Nosova, Kjell Billström, Ulf Söderlund, Per-Gunnar Andréasson, and Oksana Kuzmenkova. 2016. “The U–Pb Zircon and Baddeleyite Ages of the Neoproterozoic Volyn Large Igneous Province: Implication for the Age of the Magmatism and the Nature of a Crustal Contaminant.” GFF 138 (1): 17–30. https://doi.org/10.1080/11035897.2015.1123289.
  • Smith, M. P., and D. A. T. Harper. 2013. “Causes of the Cambrian Explosion.” Science 341 (6152): 1355–56. https://doi.org/10.1126/science.1239450.
  • Sperling, E. A., C. A. Frieder, A. V. Raman, P. R. Girguis, L. A. Levin, and A. H. Knoll. 2013. “Oxygen, Ecology, and the Cambrian Radiation of Animals.” Proceedings of the National Academy of Sciences 110 (33): 13446–51. https://doi.org/10.1073/pnas.1312778110.
  • Wood, Rachel, and Douglas H. Erwin. 2018. “Innovation Not Recovery: Dynamic Redox Promotes Metazoan Radiations: Dynamic Redox Promotes Radiations.” Biological Reviews 93 (2): 863–73. https://doi.org/10.1111/brv.12375.
  • Xiao, Shuhai, and Andrew H. Knoll. 2000. “Phosphatized Animal Embryos from the Neoproterozoic Doushantuo Formation at Weng’An, Guizhou, South China.” Journal of Paleontology 74 (5): 767–88. https://doi.org/10.1666/0022-3360(2000)074<0767:PAEFTN>2.0.CO;2.
  • Yuan, Xunlai, Zhe Chen, Shuhai Xiao, Chuanming Zhou, and Hong Hua. 2011. “An Early Ediacaran Assemblage of Macroscopic and Morphologically Differentiated Eukaryotes.” Nature 470 (7334): 390–93. https://doi.org/10.1038/nature09810.
  • Zhang, Xingliang, Degan Shu, Jian Han, Zhifei Zhang, Jianni Liu, and Dongjing Fu. 2014. “Triggers for the Cambrian Explosion: Hypotheses and Problems.” Gondwana Research 25 (3): 896–909. https://doi.org/10.1016/j.gr.2013.06.001.

 

Lecture 3

  • Ahm, Anne-Sofie C., Christian J. Bjerrum, and Emma U. Hammarlund. 2017. “Disentangling the Record of Diagenesis, Local Redox Conditions, and Global Seawater Chemistry during the Latest Ordovician Glaciation.” Earth and Planetary Science Letters 459 (February): 145–56. https://doi.org/10.1016/j.epsl.2016.09.049.
  • Brenchley, P. J., J. D. Marshall, G. A. F. Carden, D. B. R. Robertson, D. G. F. Long, T. Meidla, L. Hints, and T. F. Anderson. 1994. “Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period.” Geology 22 (4): 295–98. https://doi.org/10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2.
  • Crowley, Thomas J., and Steven K. Baum. 1995. “Reconciling Late Ordovician (440 Ma) Glaciation with Very High (14X) CO 2 Levels.” Journal of Geophysical Research: Atmospheres 100 (D1): 1093–1101. https://doi.org/10.1029/94JD02521.
  • Delabroye, A., and M. Vecoli. 2010. “The End-Ordovician Glaciation and the Hirnantian Stage: A Global Review and Questions about Late Ordovician Event Stratigraphy.” Earth-Science Reviews 98 (3–4): 269–82. https://doi.org/10.1016/j.earscirev.2009.10.010.
  • Finnegan, S., N. A. Heim, S. E. Peters, and W. W. Fischer. 2012. “Climate Change and the Selective Signature of the Late Ordovician Mass Extinction.” Proceedings of the National Academy of Sciences 109 (18): 6829–34. https://doi.org/10.1073/pnas.1117039109.
  • Fortey, Richard A., and L. Robin M. Cocks. 2005. “Late Ordovician Global Warming—The Boda Event.” Geology 33 (5): 405. https://doi.org/10.1130/G21180.1.
  • Ghienne, Jean-François, André Desrochers, Thijs R.A. Vandenbroucke, Aicha Achab, Esther Asselin, Marie-Pierre Dabard, Claude Farley, et al. 2014. “A Cenozoic-Style Scenario for the End-Ordovician Glaciation.” Nature Communications 5 (1). https://doi.org/10.1038/ncomms5485.
  • Hammarlund, Emma U., Tais W. Dahl, David A.T. Harper, David P.G. Bond, Arne T. Nielsen, Christian J. Bjerrum, Niels H. Schovsbo, Hans P. Schönlaub, Jan A. Zalasiewicz, and Donald E. Canfield. 2012. “A Sulfidic Driver for the End-Ordovician Mass Extinction.” Earth and Planetary Science Letters 331–332 (May): 128–39. https://doi.org/10.1016/j.epsl.2012.02.024.
  • Harper, David A.T., Emma U. Hammarlund, and Christian M.Ø. Rasmussen. 2014. “End Ordovician Extinctions: A Coincidence of Causes.” Gondwana Research 25 (4): 1294–1307. https://doi.org/10.1016/j.gr.2012.12.021.
  • Herrmann, Achim D, Bernd J Haupt, Mark E Patzkowsky, Dan Seidov, and Rudy L Slingerland. 2004. “Response of Late Ordovician Paleoceanography to Changes in Sea Level, Continental Drift, and Atmospheric PCO2: Potential Causes for Long-Term Cooling and Glaciation.” Palaeogeography, Palaeoclimatology, Palaeoecology 210 (2–4): 385–401. https://doi.org/10.1016/j.palaeo.2004.02.034.
  • Holland, Steven M. 2016. “Ecological Disruption Precedes Mass Extinction.” Proceedings of the National Academy of Sciences 113 (30): 8349–51. https://doi.org/10.1073/pnas.1608630113.
  • Isozaki, Yukio, and Thomas Servais. 2018. “The Hirnantian (Late Ordovician) and End-Guadalupian (Middle Permian) Mass-Extinction Events Compared.” Lethaia 51 (2): 173–86. https://doi.org/10.1111/let.12252.
  • Jones, David S., Anna M. Martini, David A. Fike, and Kunio Kaiho. 2017. “A Volcanic Trigger for the Late Ordovician Mass Extinction? Mercury Data from South China and Laurentia.” Geology 45 (7): 631–34. https://doi.org/10.1130/G38940.1.
  • Kump, L.R, M.A Arthur, M.E Patzkowsky, M.T Gibbs, D.S Pinkus, and P.M Sheehan. 1999. “A Weathering Hypothesis for Glaciation at High Atmospheric PCO2 during the Late Ordovician.” Palaeogeography, Palaeoclimatology, Palaeoecology 152 (1–2): 173–87. https://doi.org/10.1016/S0031-0182(99)00046-2.
  • Layou, K. M. 2009. “Ecological Restructuring after Extinction: The Late Ordovician (Mohawkian) of the Eastern United States.” PALAIOS 24 (2): 118–30. https://doi.org/10.2110/palo.2008.p08-012r.
  • Sheehan, Peter M. 2001. “The Late Ordovician Mass Extinction.” Annual Review of Earth and Planetary Sciences 29 (1): 331–64. https://doi.org/10.1146/annurev.earth.29.1.331.
  • Sheets, H. David, Charles E. Mitchell, Michael J. Melchin, Jason Loxton, Petr Štorch, Kristi L. Carlucci, and Andrew D. Hawkins. 2016. “Graptolite Community Responses to Global Climate Change and the Late Ordovician Mass Extinction.” Proceedings of the National Academy of Sciences 113 (30): 8380–85. https://doi.org/10.1073/pnas.1602102113.
  • Sutcliffe, Owen E., Julian A. Dowdeswell, Robert J. Whittington, Johannes N. Theron, and Jonathan Craig. 2000. “Calibrating the Late Ordovician Glaciation and Mass Extinction by the Eccentricity Cycles of Earth’s Orbit.” Geology 28 (11): 967. https://doi.org/10.1130/0091-7613(2000)28<967:CTLOGA>2.0.CO;2.
  • Vandenbroucke, Thijs R.A., Howard A. Armstrong, Mark Williams, Florentin Paris, Koen Sabbe, Jan A. Zalasiewicz, Jaak Nõlvak, and Jacques Verniers. 2010. “Epipelagic Chitinozoan Biotopes Map a Steep Latitudinal Temperature Gradient for Earliest Late Ordovician Seas: Implications for a Cooling Late Ordovician Climate.” Palaeogeography, Palaeoclimatology, Palaeoecology 294 (3–4): 202–19. https://doi.org/10.1016/j.palaeo.2009.11.026.
  • Wang, F., J.-S. Lin, and K. Liu. 2011. “Steric Control of the Reaction of CH Stretch-Excited CHD3 with Chlorine Atom.” Science 331 (6019): 900–903. https://doi.org/10.1126/science.1199771.

 

Lecture 4

  • Benca, Jeffrey P., Ivo A. P. Duijnstee, and Cindy V. Looy. 2018. “UV-B–induced Forest Sterility: Implications of Ozone Shield Failure in Earth’s Largest Extinction.” Science Advances 4 (2): e1700618. https://doi.org/10.1126/sciadv.1700618.
  • Benton, Michael J., and Richard J. Twitchett. 2003. “How to Kill (Almost) All Life: The End-Permian Extinction Event.” Trends in Ecology & Evolution 18 (7): 358–65. https://doi.org/10.1016/S0169-5347(03)00093-4.
  • Berner, R. A. 2002. “Examination of Hypotheses for the Permo-Triassic Boundary Extinction by Carbon Cycle Modeling.” Proceedings of the National Academy of Sciences 99 (7): 4172–77. https://doi.org/10.1073/pnas.032095199.
  • Crain, J. N. 2005. “End States in One-Dimensional Atom Chains.” Science 307 (5710): 703–6. https://doi.org/10.1126/science.1106911.
  • Erwin, Douglas H. 1994. “The Permo–Triassic Extinction.” Nature 367 (6460): 231–36. https://doi.org/10.1038/367231a0.
  • Eshet, Yoram, Michael R. Rampino, and Henk Visscher. 1995. “Fungal Event and Palynological Record of Ecological Crisis and Recovery across the Permian-Triassic Boundary.” Geology 23 (11): 967. https://doi.org/10.1130/0091-7613(1995)023<0967:FEAPRO>2.3.CO;2.
  • Ezcurra, Martín D., and Richard J. Butler. 2018. “The Rise of the Ruling Reptiles and Ecosystem Recovery from the Permo-Triassic Mass Extinction.” Proceedings of the Royal Society B: Biological Sciences 285 (1880): 20180361. https://doi.org/10.1098/rspb.2018.0361.
  • Isozaki, Yukio, and Thomas Servais. 2018. “The Hirnantian (Late Ordovician) and End-Guadalupian (Middle Permian) Mass-Extinction Events Compared.” Lethaia 51 (2): 173–86. https://doi.org/10.1111/let.12252.
  • Kamo, Sandra L, Gerald K Czamanske, Yuri Amelin, Valeri A Fedorenko, D.W Davis, and V.R Trofimov. 2003. “Rapid Eruption of Siberian Flood-Volcanic Rocks and Evidence for Coincidence with the Permian–Triassic Boundary and Mass Extinction at 251 Ma.” Earth and Planetary Science Letters 214 (1–2): 75–91. https://doi.org/10.1016/S0012-821X(03)00347-9.
  • Kidder, David L., and Thomas R. Worsley. 2004. “Causes and Consequences of Extreme Permo-Triassic Warming to Globally Equable Climate and Relation to the Permo-Triassic Extinction and Recovery.” Palaeogeography, Palaeoclimatology, Palaeoecology 203 (3–4): 207–37. https://doi.org/10.1016/S0031-0182(03)00667-9.
  • Knoll, Andrew H., Richard K. Bambach, Jonathan L. Payne, Sara Pruss, and Woodward W. Fischer. 2007. “Paleophysiology and End-Permian Mass Extinction.” Earth and Planetary Science Letters 256 (3–4): 295–313. https://doi.org/10.1016/j.epsl.2007.02.018.
  • Martindale, Rowan C., William J. Foster, and Felicitász Velledits. 2019. “The Survival, Recovery, and Diversification of Metazoan Reef Ecosystems Following the End-Permian Mass Extinction Event.” Palaeogeography, Palaeoclimatology, Palaeoecology 513 (January): 100–115. https://doi.org/10.1016/j.palaeo.2017.08.014.
  • Metcalfe, I., J.L. Crowley, R.S. Nicoll, and M. Schmitz. 2015. “High-Precision U-Pb CA-TIMS Calibration of Middle Permian to Lower Triassic Sequences, Mass Extinction and Extreme Climate-Change in Eastern Australian Gondwana.” Gondwana Research 28 (1): 61–81. https://doi.org/10.1016/j.gr.2014.09.002.
  • Montes, C., A. Cardona, C. Jaramillo, A. Pardo, J. C. Silva, V. Valencia, C. Ayala, et al. 2015. “Middle Miocene Closure of the Central American Seaway.” Science 348 (6231): 226–29. https://doi.org/10.1126/science.aaa2815.
  • Raup, D. M. 1979. “Size of the Permo-Triassic Bottleneck and Its Evolutionary Implications.” Science 206 (4415): 217–18. https://doi.org/10.1126/science.206.4415.217.
  • Renne, P. R., and A. R. Basu. 1991. “Rapid Eruption of the Siberian Traps Flood Basalts at the Permo-Triassic Boundary.” Science 253 (5016): 176–79. https://doi.org/10.1126/science.253.5016.176.
  • Retallack, Gregory J., John J. Veevers, and Ric Morante. 1996. “Global Coal Gap between Permian–Triassic Extinction and Middle Triassic Recovery of Peat-Forming Plants.” Geological Society of America Bulletin 108 (2): 195–207. https://doi.org/10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2.
  • Schubert, Jennifer K., and David J. Bottjer. 1992. “Early Triassic Stromatolites as Post-Mass Extinction Disaster Forms.” Geology 20 (10): 883. https://doi.org/10.1130/0091-7613(1992)020<0883:ETSAPM>2.3.CO;2.
  • Visscher, H., C. V. Looy, M. E. Collinson, H. Brinkhuis, J. H. A. van Konijnenburg-van Cittert, W. M. Kurschner, and M. A. Sephton. 2004. “Environmental Mutagenesis during the End-Permian Ecological Crisis.” Proceedings of the National Academy of Sciences 101 (35): 12952–56. https://doi.org/10.1073/pnas.0404472101.
  • Wignall, P. B., and R. J. Twitchett. 1996. “Oceanic Anoxia and the End Permian Mass Extinction.” Science 272 (5265): 1155–58. https://doi.org/10.1126/science.272.5265.1155.
  • Wood, Rachel, and Douglas H. Erwin. 2018. “Innovation Not Recovery: Dynamic Redox Promotes Metazoan Radiations: Dynamic Redox Promotes Radiations.” Biological Reviews 93 (2): 863–73. https://doi.org/10.1111/brv.12375.
  • Xie, Shucheng, Thomas J. Algeo, Wenfeng Zhou, Xiaoyan Ruan, Genming Luo, Junhua Huang, and Jiaxin Yan. 2017. “Contrasting Microbial Community Changes during Mass Extinctions at the Middle/Late Permian and Permian/Triassic Boundaries.” Earth and Planetary Science Letters 460 (February): 180–91. https://doi.org/10.1016/j.epsl.2016.12.015.

 

Lecture 5

  • Berner, Robert A., and David J. Beerling. 2007. “Volcanic Degassing Necessary to Produce a CaCO3 Undersaturated Ocean at the Triassic–Jurassic Boundary.” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 368–73. https://doi.org/10.1016/j.palaeo.2006.06.039.
  • Blackburn, T. J., P. E. Olsen, S. A. Bowring, N. M. McLean, D. V. Kent, J. Puffer, G. McHone, E. T. Rasbury, and M. Et-Touhami. 2013. “Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province.” Science 340 (6135): 941–45. https://doi.org/10.1126/science.1234204.
  • Cohen, Anthony S., and Angela L. Coe. 2002. “New Geochemical Evidence for the Onset of Volcanism in the Central Atlantic Magmatic Province and Environmental Change at the Triassic-Jurassic Boundary.” Geology 30 (3): 267. https://doi.org/10.1130/0091-7613(2002)030<0267:NGEFTO>2.0.CO;2.
  • Dunhill, Alexander M., William J. Foster, James Sciberras, and Richard J. Twitchett. 2018. “Impact of the Late Triassic Mass Extinction on Functional Diversity and Composition of Marine Ecosystems.” Edited by Michael Hautmann. Palaeontology 61 (1): 133–48. https://doi.org/10.1111/pala.12332.
  • Greene, Sarah E., Rowan C. Martindale, Kathleen A. Ritterbush, David J. Bottjer, Frank A. Corsetti, and William M. Berelson. 2012. “Recognising Ocean Acidification in Deep Time: An Evaluation of the Evidence for Acidification across the Triassic-Jurassic Boundary.” Earth-Science Reviews 113 (1–2): 72–93. https://doi.org/10.1016/j.earscirev.2012.03.009.
  • Hallam, Anthony. 2002. “How Catastrophic Was the End-Triassic Mass Extinction?” Lethaia 35 (2): 147–57. https://doi.org/10.1111/j.1502-3931.2002.tb00075.x.
  • Hautmann, Michael. 2004. “Effect of End-Triassic CO2 Maximum on Carbonate Sedimentation and Marine Mass Extinction.” Facies 50 (2). https://doi.org/10.1007/s10347-004-0020-y.
  • Hesselbo, Stephen P., Christopher A. McRoberts, and József Pálfy. 2007. “Triassic–Jurassic Boundary Events: Problems, Progress, Possibilities.” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 1–10. https://doi.org/10.1016/j.palaeo.2006.06.020.
  • Hesselbo, Stephen P., Stuart A. Robinson, Finn Surlyk, and Stefan Piasecki. 2002. “Terrestrial and Marine Extinction at the Triassic-Jurassic Boundary Synchronized with Major Carbon-Cycle Perturbation: A Link to Initiation of Massive Volcanism?” Geology 30 (3): 251. https://doi.org/10.1130/0091-7613(2002)030<0251:TAMEAT>2.0.CO;2.
  • Kiessling, Wolfgang, Martin Aberhan, Benjamin Brenneis, and Peter J. Wagner. 2007. “Extinction Trajectories of Benthic Organisms across the Triassic–Jurassic Boundary.” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 201–22. https://doi.org/10.1016/j.palaeo.2006.06.029.
  • Lindström, Sofie, Bas van de Schootbrugge, Katrine H. Hansen, Gunver K. Pedersen, Peter Alsen, Nicolas Thibault, Karen Dybkjær, Christian J. Bjerrum, and Lars Henrik Nielsen. 2017. “A New Correlation of Triassic–Jurassic Boundary Successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A Time-Line for the End-Triassic Mass Extinction.” Palaeogeography, Palaeoclimatology, Palaeoecology 478 (July): 80–102. https://doi.org/10.1016/j.palaeo.2016.12.025.
  • McElwain, J. C. 1999. “Fossil Plants and Global Warming at the Triassic-Jurassic Boundary.” Science 285 (5432): 1386–90. https://doi.org/10.1126/science.285.5432.1386.
  • Olsen, P. E.,  D. V. Kent, H. D. Sues, E. C., C. Koeberl, H. Huber, Rainforth, S. J. Fowell, M. J. Szajna, and B. W. Hartline. 2002. “Ascent of Dinosaurs Linked to an Iridium Anomaly at the Triassic-Jurassic Boundary.” Science 296 (5571): 1305–7. https://doi.org/10.1126/science.1065522.
  • Olsen, P. E., H. D. Sues, E. C. Rainforth, D. V. Kent, C. Koeberl, H. Huber, A. Montanari, S. J. Fowell, M. J. Szajna, and B. W. Hartline. 2003. “Response to Comment on ‘Ascent of Dinosaurs Linked to an Iridium Anomaly at the Triassic-Jurassic Boundary.’” Science 301 (5630): 169c–169. https://doi.org/10.1126/science.1083928.
  • Percival, Lawrence M. E., Micha Ruhl, Stephen P. Hesselbo, Hugh C. Jenkyns, Tamsin A. Mather, and Jessica H. Whiteside. 2017. “Mercury Evidence for Pulsed Volcanism during the End-Triassic Mass Extinction.” Proceedings of the National Academy of Sciences 114 (30): 7929–34. https://doi.org/10.1073/pnas.1705378114.
  • Schoene, Blair, Jean Guex, Annachiara Bartolini, Urs Schaltegger, and Terrence J. Blackburn. 2010. “Correlating the End-Triassic Mass Extinction and Flood Basalt Volcanism at the 100 Ka Level.” Geology 38 (5): 387–90. https://doi.org/10.1130/G30683.1.
  • Schootbrugge, B. van de, F. Tremolada, Y. Rosenthal, T.R. Bailey, S. Feist-Burkhardt, H. Brinkhuis, J. Pross, D.V. Kent, and P.G. Falkowski. 2007. “End-Triassic Calcification Crisis and Blooms of Organic-Walled ‘Disaster Species.’” Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4): 126–41. https://doi.org/10.1016/j.palaeo.2006.06.026.
  • Simms, Michael J. 2003. “Uniquely Extensive Seismite from the Latest Triassic of the United Kingdom: Evidence for Bolide Impact?” Geology 31 (6): 557. https://doi.org/10.1130/0091-7613(2003)031<0557:UESFTL>2.0.CO;2.
  • Spray, John G., Simon P. Kelley, and David B. Rowley. 1998. “Evidence for a Late Triassic Multiple Impact Event on Earth.” Nature 392 (6672): 171–73. https://doi.org/10.1038/32397.

 

Lecture 6

  • Alvarez, L. W., W. Alvarez, F. Asaro, and H. V. Michel. 1980. “Extraterrestrial Cause for the Cretaceous-Tertiary Extinction.” Science 208 (4448): 1095–1108. https://doi.org/10.1126/science.208.4448.1095.
  • Archibald, J. D., W. A. Clemens, K. Padian, T. Rowe, N. Macleod, P. M. Barrett, A. Gale, et al. 2010. “Cretaceous Extinctions: Multiple Causes.” Science 328 (5981): 973–973. https://doi.org/10.1126/science.328.5981.973-a.
  • Belcher, Claire M., Margaret E. Collinson, Arthur R. Sweet, Alan R. Hildebrand, and Andrew C. Scott. 2003. “Fireball Passes and Nothing Burns—The Role of Thermal Radiation in the Cretaceous-Tertiary Event: Evidence from the Charcoal Record of North America.” Geology 31 (12): 1061. https://doi.org/10.1130/G19989.1.
  • Brett, Robin. 1992. “The Cretaceous-Tertiary Extinction: A Lethal Mechanism Involving Anhydrite Target Rocks.” Geochimica et Cosmochimica Acta 56 (9): 3603–6. https://doi.org/10.1016/0016-7037(92)90406-9.
  • Field, Daniel J., Antoine Bercovici, Jacob S. Berv, Regan Dunn, David E. Fastovsky, Tyler R. Lyson, Vivi Vajda, and Jacques A. Gauthier. 2018. “Early Evolution of Modern Birds Structured by Global Forest Collapse at the End-Cretaceous Mass Extinction.” Current Biology 28 (11): 1825–1831.e2. https://doi.org/10.1016/j.cub.2018.04.062.
  • Gale, Andrew S. 2006. “The Cretaceous—Palaeogene Boundary on the Brazos River, Falls County, Texas: Is There Evidence for Impact-Induced Tsunami Sedimentation?” Proceedings of the Geologists’ Association 117 (2): 173–85. https://doi.org/10.1016/S0016-7878(06)80008-8.
  • Keller, G., T. Adatte, A. Pardo, S. Bajpai, A. Khosla, and B. Samant. 2010. “Cretaceous Extinctions: Evidence Overlooked.” Science 328 (5981): 974–75. https://doi.org/10.1126/science.328.5981.974-a.
  • Keller, G., E. Barrera, B. Schmitz, and E. Mattson. 1993. “Gradual Mass Extinction, Species Survivorship, and Long-Term Environmental Changes across the Cretaceous-Tertiary Boundary in High Latitudes.” Geological Society of America Bulletin 105 (8): 979–97. https://doi.org/10.1130/0016-7606(1993)105<0979:GMESSA>2.3.CO;2.
  • Keller, Gerta, Paula Mateo, Jahnavi Punekar, Hassan Khozyem, Brian Gertsch, Jorge Spangenberg, Andre Mbabi Bitchong, and Thierry Adatte. 2018. “Environmental Changes during the Cretaceous-Paleogene Mass Extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene.” Gondwana Research 56 (April): 69–89. https://doi.org/10.1016/j.gr.2017.12.002.
  • Keller, Gerta, Jahnavi Punekar, and Paula Mateo. 2016. “Upheavals during the Late Maastrichtian: Volcanism, Climate and Faunal Events Preceding the End-Cretaceous Mass Extinction.” Palaeogeography, Palaeoclimatology, Palaeoecology 441 (January): 137–51. https://doi.org/10.1016/j.palaeo.2015.06.034.
  • Luo, Zhe-Xi. 2007. “Transformation and Diversification in Early Mammal Evolution.” Nature 450 (7172): 1011–19. https://doi.org/10.1038/nature06277.
  • Macleod, N., P. F. Rawson, P. L. Forey, F. T. Banner, M. K. Boudagher-Fadel, P. R. Bown, J. A. Burnett, et al. 1997. “The Cretaceous-Tertiary Biotic Transition.” Journal of the Geological Society 154 (2): 265–92. https://doi.org/10.1144/gsjgs.154.2.0265.
  • Macleod, Norman, and Gerta Keller. 1991. “How Complete Are Cretaceous /Tertiary Boundary Sections? A Chronostratigraphic Estimate Based on Graphic Correlation.” Geological Society of America Bulletin 103 (11): 1439. https://doi.org/10.1130/0016-7606(1991)103<1439:HCACTB>2.3.CO;2.
  • Ohno, Sohsuke, Toshihiko Kadono, Kosuke Kurosawa, Taiga Hamura, Tatsuhiro Sakaiya, Keisuke Shigemori, Yoichiro Hironaka, et al. 2014. “Production of Sulphate-Rich Vapour during the Chicxulub Impact and Implications for Ocean Acidification.” Nature Geoscience 7 (4): 279–82. https://doi.org/10.1038/ngeo2095.
  • Renne, Paul R., Courtney J. Sprain, Mark A. Richards, Stephen Self, Loÿc Vanderkluysen, and Kanchan Pande. 2015. “State Shift in Deccan Volcanism at the Cretaceous-Paleogene Boundary, Possibly Induced by Impact.” Science 350 (6256): 76–78. https://doi.org/10.1126/science.aac7549.
  • Richards, Mark A., Walter Alvarez, Stephen Self, Leif Karlstrom, Paul R. Renne, Michael Manga, Courtney J. Sprain, Jan Smit, Loÿc Vanderkluysen, and Sally A. Gibson. 2015. “Triggering of the Largest Deccan Eruptions by the Chicxulub Impact.” Geological Society of America Bulletin 127 (11–12): 1507–20. https://doi.org/10.1130/B31167.1.
  • Sakamoto, Manabu, Michael J. Benton, and Chris Venditti. 2016. “Dinosaurs in Decline Tens of Millions of Years before Their Final Extinction.” Proceedings of the National Academy of Sciences 113 (18): 5036–40. https://doi.org/10.1073/pnas.1521478113.
  • Schoene, B., K. M. Samperton, M. P. Eddy, G. Keller, T. Adatte, S. A. Bowring, S. F. R. Khadri, and B. Gertsch. 2015. “U-Pb Geochronology of the Deccan Traps and Relation to the End-Cretaceous Mass Extinction.” Science 347 (6218): 182–84. https://doi.org/10.1126/science.aaa0118.
  • Schulte, P., L. Alegret, I. Arenillas, J. A. Arz, P. J. Barton, P. R. Bown, T. J. Bralower, G. L. Christeson, P. Claeys, C. S. Cockell, G. S. Collins, A. Deutsch, T. J. Goldin, K. Goto, J. M. Grajales-Nishimura, R. A. F. Grieve, S. P. S. Gulick, K. R. Johnson, W. Kiessling, C. Koeberl, D. A. Kring, K. G. MacLeod, et al. 2010. “The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary.” Science 327 (5970): 1214–18. https://doi.org/10.1126/science.1177265.
  • Schulte, P., L. Alegret, I. Arenillas, J. A. Arz, P. J. Barton, P. R. Bown, T. J. Bralower, G. L. Christeson, P. Claeys, C. S. Cockell, G. S. Collins, A. Deutsch, T. J. Goldin, K. Goto, J. M. Grajales-Nishimura, R. A. F. Grieve, S. P. S. Gulick, K. R. Johnson, W. Kiessling, C. Koeberl, D. A. Kring, K. G. Macleod, et al. 2010. “Response--Cretaceous Extinctions.” Science 328 (5981): 975–76. https://doi.org/10.1126/science.328.5981.975.
  • Springer, M. S., W. J. Murphy, E. Eizirik, and S. J. O’Brien. 2003. “Placental Mammal Diversification and the Cretaceous-Tertiary Boundary.” Proceedings of the National Academy of Sciences 100 (3): 1056–61. https://doi.org/10.1073/pnas.0334222100.
  • Tyrrell, Toby, Agostino Merico, and David Ian Armstrong McKay. 2015. “Severity of Ocean Acidification Following the End-Cretaceous Asteroid Impact.” Proceedings of the National Academy of Sciences 112 (21): 6556–61. https://doi.org/10.1073/pnas.1418604112.

 

Lecture 7

  • Bottomley, Richard, Richard Grieve, Derek York, and Victor Masaitis. 1997. “The Age of the Popigai Impact Event and Its Relation to Events at the Eocene/Oligocene Boundary.” Nature 388 (July): 365.
  • Bowen, Gabriel J., David J. Beerling, Paul L. Koch, James C. Zachos, and Thomas Quattlebaum. 2004. “A Humid Climate State during the Palaeocene/Eocene Thermal Maximum.” Nature 432 (7016): 495–99. https://doi.org/10.1038/nature03115.
  • Corliss, B. H., M.-P. Aubry, W. A. Berggren, J. M. Fenner, L. D. Keigwin, and G. Keller. 1984. “The Eocene/Oligocene Boundary Event in the Deep Sea.” Science 226 (4676): 806–10. https://doi.org/10.1126/science.226.4676.806.
  • Coxall, Helen K., Paul A. Wilson, Heiko Pälike, Caroline H. Lear, and Jan Backman. 2005. “Rapid Stepwise Onset of Antarctic Glaciation and Deeper Calcite Compensation in the Pacific Ocean.” Nature 433 (7021): 53–57. https://doi.org/10.1038/nature03135.
  • DeConto, Robert M., and David Pollard. 2003. “Rapid Cenozoic Glaciation of Antarctica Induced by Declining Atmospheric CO2.” Nature 421 (January): 245.
  • Dickens, G. R. 2011. “Down the Rabbit Hole: Toward Appropriate Discussion of Methane Release from Gas Hydrate Systems during the Paleocene-Eocene Thermal Maximum and Other Past Hyperthermal Events.” Climate of the Past 7 (3): 831–46. https://doi.org/10.5194/cp-7-831-2011.
  • Dickens, Gerald R., James R. O’Neil, David K. Rea, and Robert M. Owen. 1995. “Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene.” Paleoceanography 10 (6): 965–71. https://doi.org/10.1029/95PA02087.
  • Farley, K.A., and S.F. Eltgroth. 2003. “An Alternative Age Model for the Paleocene–Eocene Thermal Maximum Using Extraterrestrial 3He.” Earth and Planetary Science Letters 208 (3–4): 135–48. https://doi.org/10.1016/S0012-821X(03)00017-7.
  • Gingerich, Philip D. 2006. “Environment and Evolution through the Paleocene–Eocene Thermal Maximum.” Trends in Ecology & Evolution 21 (5): 246–53. https://doi.org/10.1016/j.tree.2006.03.006.
  • Gutjahr, Marcus, Andy Ridgwell, Philip F. Sexton, Eleni Anagnostou, Paul N. Pearson, Heiko Pälike, Richard D. Norris, Ellen Thomas, and Gavin L. Foster. 2017. “Very Large Release of Mostly Volcanic Carbon during the Palaeocene–Eocene Thermal Maximum.” Nature 548 (7669): 573–77. https://doi.org/10.1038/nature23646.
  • Hartenberger, Jean-Louis. 1998. “An Asian Grande Coupure.” Nature 394 (6691): 321–321. https://doi.org/10.1038/28501.
  • Higgins, John A., and Daniel P. Schrag. 2006. “Beyond Methane: Towards a Theory for the Paleocene–Eocene Thermal Maximum.” Earth and Planetary Science Letters 245 (3–4): 523–37. https://doi.org/10.1016/j.epsl.2006.03.009.
  • Keller, Gerta, Paula Mateo, Jahnavi Punekar, Hassan Khozyem, Brian Gertsch, Jorge Spangenberg, Andre Mbabi Bitchong, and Thierry Adatte. 2018. “Environmental Changes during the Cretaceous-Paleogene Mass Extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene.” Gondwana Research 56 (April): 69–89. https://doi.org/10.1016/j.gr.2017.12.002.
  • Lear, C. H., H. Elderfield, and P. A. Wilson. 2000. “Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite.” Science 287 (5451): 269–72. https://doi.org/10.1126/science.287.5451.269.
  • Lourens, Lucas J., Appy Sluijs, Dick Kroon, James C. Zachos, Ellen Thomas, Ursula Röhl, Julie Bowles, and Isabella Raffi. 2005. “Astronomical Pacing of Late Palaeocene to Early Eocene Global Warming Events.” Nature 435 (7045): 1083–87. https://doi.org/10.1038/nature03814.
  • Molina, Eustoquio. 2015. “Evidence and Causes of the Main Extinction Events in the Paleogene Based on Extinction and Survival Patterns of Foraminifera.” Earth-Science Reviews 140 (January): 166–81. https://doi.org/10.1016/j.earscirev.2014.11.008.
  • Pagani, M., M. Huber, Z. Liu, S. M. Bohaty, J. Henderiks, W. Sijp, S. Krishnan, and R. M. DeConto. 2011. “The Role of Carbon Dioxide During the Onset of Antarctic Glaciation.” Science 334 (6060): 1261–64. https://doi.org/10.1126/science.1203909.
  • Penman, Donald E., Bärbel Hönisch, Richard E. Zeebe, Ellen Thomas, and James C. Zachos. 2014. “Rapid and Sustained Surface Ocean Acidification during the Paleocene-Eocene Thermal Maximum.” Paleoceanography 29 (5): 357–69. https://doi.org/10.1002/2014PA002621.
  • Prave, A.R., C.R. Bates, C.H. Donaldson, H. Toland, D.J. Condon, D. Mark, and T.D. Raub. 2016. “Geology and Geochronology of the Tana Basin, Ethiopia: LIP Volcanism, Super Eruptions and Eocene–Oligocene Environmental Change.” Earth and Planetary Science Letters 443 (June): 1–8. https://doi.org/10.1016/j.epsl.2016.03.009.
  • Prothero, D R. 1994. “The Late Eocene-Oligocene Extinctions.” Annual Review of Earth and Planetary Sciences 22 (1): 145–65. https://doi.org/10.1146/annurev.ea.22.050194.001045.
  • Sahy, Diana, Daniel J. Condon, Dennis O. Terry, Anne U. Fischer, and Klaudia F. Kuiper. 2015. “Synchronizing Terrestrial and Marine Records of Environmental Change across the Eocene–Oligocene Transition.” Earth and Planetary Science Letters 427 (October): 171–82. https://doi.org/10.1016/j.epsl.2015.06.057.
  • Schaller, M. F., M. K. Fung, J. D. Wright, M. E. Katz, and D. V. Kent. 2016. “Impact Ejecta at the Paleocene-Eocene Boundary.” Science 354 (6309): 225–29. https://doi.org/10.1126/science.aaf5466.
  • Sun, Jimin, Xijun Ni, Shundong Bi, Wenyu Wu, Jie Ye, Jin Meng, and Brian F. Windley. 2014. “Synchronous Turnover of Flora, Fauna, and Climate at the Eocene–Oligocene Boundary in Asia.” Scientific Reports 4 (December): 7463. https://doi.org/10.1038/srep07463.
  • Svensen, Henrik, Sverre Planke, Anders Malthe-Sørenssen, Bjørn Jamtveit, Reidun Myklebust, Torfinn Rasmussen Eidem, and Sebastian S. Rey. 2004. “Release of Methane from a Volcanic Basin as a Mechanism for Initial Eocene Global Warming.” Nature 429 (6991): 542–45. https://doi.org/10.1038/nature02566.
  • Yao, Weiqi, Adina Paytan, and Ulrich G. Wortmann. 2018. “Large-Scale Ocean Deoxygenation during the Paleocene-Eocene Thermal Maximum.” Science 361 (6404): 804–6. https://doi.org/10.1126/science.aar8658.
  • Zachos, J. 2001. “Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present.” Science 292 (5517): 686–93. https://doi.org/10.1126/science.1059412.
  • Zachos, J. C. 2003. “A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum.” Science 302 (5650): 1551–54. https://doi.org/10.1126/science.1090110.
  • Zachos, J. C. 2005. “Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum.” Science 308 (5728): 1611–15. https://doi.org/10.1126/science.1109004.
  • Zachos, J, and L Kump. 2005. “Carbon Cycle Feedbacks and the Initiation of Antarctic Glaciation in the Earliest Oligocene.” Global and Planetary Change 47 (1): 51–66. https://doi.org/10.1016/j.gloplacha.2005.01.001.
  • Zeebe, R. E., G. R. Dickens, A. Ridgwell, A. Sluijs, and E. Thomas. 2014. “Onset of Carbon Isotope Excursion at the Paleocene-Eocene Thermal Maximum Took Millennia, Not 13 Years.” Proceedings of the National Academy of Sciences 111 (12): E1062–63. https://doi.org/10.1073/pnas.1321177111.
  • Zeebe, Richard E., James C. Zachos, and Gerald R. Dickens. 2009. “Carbon Dioxide Forcing Alone Insufficient to Explain Palaeocene–Eocene Thermal Maximum Warming.” Nature Geoscience 2 (8): 576–80. https://doi.org/10.1038/ngeo578.

 

Lecture 8

  • Alroy, J. 2008. “Dynamics of Origination and Extinction in the Marine Fossil Record.” Proceedings of the National Academy of Sciences 105 (Supplement 1): 11536–42. https://doi.org/10.1073/pnas.0802597105.
  • Alroy, J. 2010. “The Shifting Balance of Diversity Among Major Marine Animal Groups.” Science 329 (5996): 1191–94. https://doi.org/10.1126/science.1189910.
  • Bambach, Richard K. 2006. “Phanerozoic Biodiversity Mass Extinctions.” Annual Review of Earth and Planetary Sciences 34 (1): 127–55. https://doi.org/10.1146/annurev.earth.33.092203.122654.
  • Benton, M. 1995. “Diversification and Extinction in the History of Life.” Science 268 (5207): 52–58. https://doi.org/10.1126/science.7701342.
  • Bond, David P.G., and Stephen E. Grasby. 2017. “On the Causes of Mass Extinctions.” Palaeogeography, Palaeoclimatology, Palaeoecology 478 (July): 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005.
  • Diffenbaugh, N. S., and C. B. Field. 2013. “Changes in Ecologically Critical Terrestrial Climate Conditions.” Science 341 (6145): 486–92. https://doi.org/10.1126/science.1237123.
  • Erlykin, Anatoly D., David A. T. Harper, Terry Sloan, and Arnold W. Wolfendale. 2018. “Periodicity in Extinction Rates.” Edited by Andrew Smith. Palaeontology 61 (1): 149–58. https://doi.org/10.1111/pala.12334.
  • Jones, Morgan T., Dougal A. Jerram, Henrik H. Svensen, and Clayton Grove. 2016. “The Effects of Large Igneous Provinces on the Global Carbon and Sulphur Cycles.” Palaeogeography, Palaeoclimatology, Palaeoecology 441 (January): 4–21. https://doi.org/10.1016/j.palaeo.2015.06.042.
  • Kravchinsky, Vadim A. 2012. “Paleozoic Large Igneous Provinces of Northern Eurasia: Correlation with Mass Extinction Events.” Global and Planetary Change 86–87 (April): 31–36. https://doi.org/10.1016/j.gloplacha.2012.01.007.
  • Melott, Adrian L., and Richard K. Bambach. 2017. “Comments on: Periodicity in the Extinction Rate and Possible Astronomical Causes - Comment on Mass Extinctions over the Last 500 Myr: An Astronomical Cause? (Erlykin et Al .).” Edited by Andrew Smith. Palaeontology 60 (6): 911–20. https://doi.org/10.1111/pala.12322.
  • Muscente, A. D., Anirudh Prabhu, Hao Zhong, Ahmed Eleish, Michael B. Meyer, Peter Fox, Robert M. Hazen, and Andrew H. Knoll. 2018. “Quantifying Ecological Impacts of Mass Extinctions with Network Analysis of Fossil Communities.” Proceedings of the National Academy of Sciences 115 (20): 5217–22. https://doi.org/10.1073/pnas.1719976115.
  • Nawrot, Rafał, Daniele Scarponi, Michele Azzarone, Troy A. Dexter, Kristopher M. Kusnerik, Jacalyn M. Wittmer, Alessandro Amorosi, and Michał Kowalewski. 2018. “Stratigraphic Signatures of Mass Extinctions: Ecological and Sedimentary Determinants.” Proceedings of the Royal Society B: Biological Sciences 285 (1886): 20181191. https://doi.org/10.1098/rspb.2018.1191.