This is the reading list to accompany the 2018-19 Part III course in Planetary Chemistry. It is taught by Helen Williams and Oli Shorttle
Planetary Chemistry and Evolution - Helen Williams and Oli Shorttle
Text Books
- De Pater, I., & Lissauer, J. (2015). Planetary sciences / Imke de Pater, University of California, Berkeley & Delft University of Technology, and Jack J. Lissauer, NASA-Ames Research Center, & Stanford University. (Second ed.).
- Lodders, Katharina, and Jr, Bruce Fegley. (2015). Chemistry of the Solar System. 1st. ed. (Online access restricted to designated PCs in the main UL + affiliate libraries)
- Treatise on Geochemistry (2003/2014) - 2003 copy in the library, many papers can be found on-line
Light Reading
- Sagan, Carl (1980, latest ed. 2013) Cosmos
Lecture 1 - A (non)chondritic Earth (?)
1.1 Core Reading
- Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576-581 (2005).
- Burkhardt, C. et al. A nucleosynthetic origin for the Earth's anomalous 142Nd composition. Nature 537, 394-397 (2016).
- Burkhardt, C. et al. Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312, 390-400 (2011).
- Trinquier, A. et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374-376 (2009).
Longer reads
- Akram, W. et al., Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system Geochimica et Cosmochimica Acta 165 484-500 (2015)
- Steele R. and Boehnke, P. , Titanium isotope source relations and the extent of mixing in the proto-solar nebula examined by independent component analysis The Astrophysical Journal, 802:80 (2015)
- Warren, P. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites Earth and Planetary Science Letters 311 93-100 (2011)
Lecture 2 - Early Solar System Chronology
2.1 - Core Reading
- Kruijer et al., Age of Jupiter inferred from the distinct genetics and formation times of meteorites. PNAS (2017)
2.3 - Further reading for presenters
Literature
- Sanders and Scott, The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science 47 (12), 2170–2192 (2012) doi: 10.1111/maps.12002
- Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon Not. R. astr. Soc. 180, 57-70
- A.P. Boss, F.J. Ciesla, 2.3 - The Solar Nebula, Eds: Heinrich D. Holland, Karl K. Turekian, Treatise on Geochemistry (Second Edition), Elsevier, 2014, Pages 37-53, ISBN 9780080983004, doi:10.1016/B978-0-08-095975-7.00119-4.
- McKeegan et al., The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind. Science 332 (6037), 1528-1532. (2011) doi:10.1126/science.1204636
- Bertoldi et al., Dust emission from the most distant quasars. A&A 406, L55–L58 (2003) DOI: 10.1051/0004-6361:2003
- Kroupa, On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231-246 (2001)
- Van Kooten et al., Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. PNAS 113 (8), 2011-2016 (2016)
- Young, Bayes' Theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the solar system. Astrophys. J. 826 (2), (2016)
- Fischer and Valenti, The planet-metallicity correlation. Astrophys. J. 622, 1102-1117 (2005)
- Yurimoto et al., Origin and Evolution of Oxygen Isotopic Compositions of the Solar System. Protostars and Planets V. 849-862.
- Yurimoto et al., Oxygen Isotopes of Chondritic Components. Rev. Mineral Geochem. 68, 141-186 (2008)
- Davis and McKeegan, 1.11 Short-Lived Radionuclides and Early Solar System Chronology. Ed. Holland & Turekian, Treatise on Geochemistry (2nd Edition), Elsevier, 361-395, (2014). ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00113-3
- Galy et al., The Formation of Chondrules at High Gas Pressures in the Solar Nebula. Science 290 (5497), 1751-1752 (2000). doi: 10.1126/science.290.5497.1751
- Meng et al., The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. Astrophys. J. 836 (34), 1-19 (2017)
- Lee et al., Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 3 (1), 109-112 (1976)
- MacPherson, 1.3 - Calcium–Aluminum-Rich Inclusions in Chondritic Meteorites. Eds. Holland & Turekian, Treatise on Geochemistry (Second Edition), Elsevier, 139-179 (2014). ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00105-4.
- Sugerman et al., Massive-Star Supernovae as Major Dust Factories. Science 313 (5784), 196-200. (2006) doi: 10.1126/science.112813.
- Zinner, 1.4 - Presolar Grains. Eds. Holland & Turekian, Treatise on Geochemistry (Second Edition), 181-213. (2014) ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00101-7.
- Krot et al., Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from refractory grains and inclusions. Meteorit. Planet. Sci. 47 (12), 1948-1979 (2012). doi: 10.1111/maps.12008
- Testi et al., Dust Evolution in Protoplanetary Disks. In: Protostars and Planets VI, Ed. Beuther et al., University of Arizona Press, Tucson, 914 pp., p.339-361 (2014)
- Savage and Sembach, Interstellar abundances from absorption-line observations with the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 34, 279-329 (1996)
- Ebel, Condensation of Rocky Material in Astrophysical Environments. In: Meteorites and the Early Solar System II, Ed. Lauretta and McSween Jr. University of Arizona Press, Tuscon, 943 pp., p.253-277 (2006)
- Dwek and Scalo, the evolution of refractory interstellar grains in the solar neighbourhood. Astrophys. J. 239, 193-211 (1980)
- Dorschner and Henning, Dust metamorphosis in the galaxy. The Astron. Astrophys. Rev. 6, 271-333 (1995)
- Wasserburg et al., Short-lived nuclei in the early Solar System: Possible AGB sources. Nuclear Physics A 777, 5-69 (2006)
- Sheffer et al., Ultraviolet detection of interstellar 12C17O and the CO isotopomeric ratios toward X Persei. Astrophys. J. 574, 171-174 (2002)
- Connelly et al., The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science 338 (6107), 651-655 (2012). doi: 10.1126/science.1226919
- Scott and Krot, 1.2 Chondrites and Their Components. Meteorites and Cosmochemical Processes, V1 Treatise on Geochemistry (2nd Edition), Ed: Davis, Elsevier, 65-137 (2014)
- Boss, Temperature in protoplanetary disks. Annu. Rev. Earth Planet Sci. 26, 53-80 (1998)
- Prantzos, On the "Galactic Habitable Zone". Space Sci. Rev. 135, 313-322 (2008). doi: 10.1007/s11214-007-9236-9
- Heger et al., 2.1 Origin of the Elements. Treatise on Geochemistry (2nd ed.) Ed: Holland and Turekian, Elsevier, 1-14 (2014) ISBN 9780080983004, doi: 10.1016/B978-0-08-095975-7.00117-0
Longer reads
- Wasserburg et al.. Short-lived nuclei in the early solar system: possible AGB sources. Nuclear Physics A 777:5-69 (2006).
- Zinner. Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites. Annual Reviews of Astronomy and Astrophysics 49:147-188 (2011).
- Williams & Cieza. Protoplanetary disks and their evolution. Annual Reviews of Astronomy and Astrophysics 49:67-1 17 (201 1).
- Armitage. Dynamics of protoplanetary disks. Annual Reviews of Astronomy and Astrophysics 49:195-236 (2011).
2.4 - Online resources
- http: //www.circumstellardisksorg/ - List of observed protoplanetary disks, order by references to find the most famous examples.
3. Core Formation
3.1 Core Reading
- Carlson et al., How Did Early Earth Become Our Modern World? Annual review of earth and planetary sciences , 2014, Vol.42 (1), p.151-178 (2014)
- Rubie et al., Highly siderophile elements were stripped from Earth's mantle by iron sulfde segregation Science 353 (2016) 1141-1144
- Wood et al., Accretion of the Earth and segregation of its core Nature 441 82 5-833 (2 006)
Literature
- Andrault, D., Bolfan-Casanova, N., Nigro, G. L., Bouhifd, M. A., Garbarino, G., and Mezouar, M. (2011). Solidus and liquidus profiles of chondritic mantle: Implication for melting of the earth across its history. Earth and Planetary Science Letters, 304(1):251 – 259.
- Bouhifd, M. and Jephcoat, A. P. (2003). The effect of pressure on partitioning of ni and co between silicate and iron-rich metal liquids: a diamond-anvil cell study. Earth and Planetary Science Letters, 209(1):245 – 255.
- Capobianco, C. J., Jones, J. H., and Drake, M. J. (1993). Metal-silicate thermochemistry at high temperature: Magma oceans and the “excess siderophile element” problem of the earth’s upper mantle. Journal of Geophysical Research: Planets, 98(E3):5433–5443.
- Carlson, R. W., Garnero, E., Harrison, T. M., Li, J., Manga, M., McDonough, W. F., Mukhopadhyay, S., Romanowicz, B., Rubie, D., Williams, Q., and Zhong, S. (2014). How did early earth become our modern world? Annual Review of Earth and Planetary Sciences, 42(1):151–178.
- Davies, G. F. (1985). Heat deposition and retention in a solid planet growing by impacts. Icarus, 63(1):45 – 68.
- Elkins-Tanton, L. T. (2012). Magma Oceans in the Inner Solar System. Annual Review of Earth and Planetary Sciences, 40:113–139.
- Rubie, D., Melosh, H., Reid, J., Liebske, C., and Righter, K. (2003). Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth and Planetary Science Letters, 205(3):239 – 255.
- Rubie, D. C., Laurenz, V., Jacobson, S. A., Morbidelli, A., Palme, H., Vogel, A. K., and Frost, D. J. (2016). Highly siderophile elements were stripped from earth’s mantle by iron sulfide segregation. Science, 353(6304):1141–1144.
- Wade, J. and Wood, B. (2005). Core formation and the oxidation state of the earth. Earth and Planetary Science Letters, 236(1):78 – 95.
4. Formation of the Moon
4.1 Core Reading
- Kun Wang & Stein Jacobsen Potassium isotopic evidence for a high-energy giant impact origin of the Moon Nature 538 (2 01 6) 487-491
Literature
- Robin M. Canup & Erik Asphaug Origin of the Moon in a giant impact near the end of the Earth's formation Nature 412 708-712 (2001)
- Young, E. et al., Oxygen isotope evidence for vigorous mixing during the Moonforming giant impact. Science, 351 (6272) 493-496 (2016)
- Elkins-Tanton, LT. and Grove, L.T. Water (hydrogen) in the lunar mantle: Results from petrology and magma ocean modeling Earth and Planetary Science Letters 307 (2011) 173-179
- Stevenson, D.J. & Halliday, A.N., The origin of the Moon. Philosophical Transactions of the Royal Society A, 372:2014289 (2014)
5 - Planetary veneers and volatiles
5.1 - Core Reading
- Schönbächler, M., et al., Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth. Science 328, 884 (2010)
- Rubie et al., Highly siderophile elements were stripped from Earth's mantle by iron sulfde segregation Science 353, 1141-1144 (2016)
- Dale et al., Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements, Science 316 72-75 (2012)
- Willbold et al., The tungsten isotopic composition of the Earth's mantle before the terminal bombardment, Nature 477 195-199 (2011)
5.3 - Further reading for presenters
Literature
- Dauphas, N. et al., The cosmic molybdenum-ruthenium isotope correlation (2004) Earth Planet. Sci. Lett. 226, 465-475
- Kruijer T. S., Kleine T., Fischer-Go"dde M. and Sprung P. (2 015) Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534-537.
- Wang Z. and Becker H. (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328.
6. Mars: history and evolution
6.1 Core reading
- Wade et al., The divergent fates of primitive hydrospheric water on Earth and Mars. Nature 552 391-394 (2017)
Literature (also refer to previous seminars!)
- Walsh et al., A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475 206-209 (2011)
- Dale et al., Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements, Science 316 (2 012): 72-75
- Wordsworth, R. The Early climate of Mars. Annual Reviews of Earth and Planetary Sciences. 44, 381-408 (2016)
- Lammer et al., Outgassing History and Escape of the Martian Atmosphere and Water Inventory, Space Sciences Review 174 113–154 (2013)
7 - Giant planets at home and abroad
7.1 - Core Reading
- Clarke et al., High-resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au, The Astrophysical Journal Letters (2018)
7.3 - Further reading for presenters
- *Pollack et al., Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124 (1996)
- Stephenson. The formation of the giant planets. doi:10.1063/1.1774513 (2004) (note from Sarah: I've had problems accessing the full text from the address above, this link may work better)
- *Levison et al.. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322-324 (2015)
- Lodders. Jupiter formed with more tar than ice. The Astrophysical journal 611 (2004)
- Lunine. Giant Planets. Treatise on Geochemistry (2003/2014) (note from Sarah - there's a copy in the library office)
- Mayor & Queloz. A Jupiter mass companion to a solar-type star. Nature 378:355-359.
- *Lin et al.. Orbital migration ofthe planetary companion of 51 Pagasi to its present location. Nature 380:606-607 (1996)
- *Bodenheimer et al., Models of the in situ formation of detected extra solar giant planets. Icarus 143:2-14 (2000).
- Chatterjee et al.. Dynamical outcomes of planet-planet scattering. The Astrophysical journal 686 (2008).
- *Huang et al.. Warm Jupiters are less lonely than hot Jupiters: close neighbors. The Astrophysical journal 825 (2016)
- *Madhusudhan et al.. Towards chemical constraints on hot Jupiter migration. The Astrophysical journal Letters 794 (2014)
- Donati et al.. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. Nature 534:662-666 (2016).
Longer reads
- Planetary Sciences: Second Edition. De Pater and Lissauer. Cambridge University Press. Chapter 13.
- The Exoplanet Handbook. Perryman. Cambridge University Press.
- Born of chaos. Batygin et al. Scientific American 2016.
8 - Making a habitable planet
8.1 - Core Reading
- Rimmer et al. The origin of RNA precursors on exoplanets. Science Advances (2018)
8.3 - Further reading for presenters
Literature
- Anglada-Escudé et al.. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 546 437-440 (2016).
- *Ehlmann et al.. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-like Worlds. ]ournal of Geophysical Research 121 (2016).
- *Fischer et al.. Exoplanet detection techniques. Protostars and Planets Vi. arXiv:1505.06869 (2014).
- *Fressin et al.. The false positive rate of Kepler and the occurrence of planets. The Astrophysical journal 766:81 (2013).
- *Kane et al.. A catalogue of Kepler habitable zone exoplanet candidates. The Astrophysical journal, 830:1 (2016).
- *Kasting, Whitmire & Reynolds. Habitable zones around main sequence stars. Icarus 101, 108-128 (1993)
- *Loeb. Consolidation of fine tuning. On the habitability of our Universe. arXiv:1606.08926 (2016)
- Madhusudhan et al.. Exoplanetary atmospheres. Protostars and Planets Vi. arXiv:1402.1169 (2014).
- Segura et al.. Biosignatures from Earth-Like Planets Around M Dwarfs. Astrobiology 56:706-726 (2005).
Longer reads
- Langmuir & Broecker. How to build a habitable planet: the story of Earth from the Big Bang to Humankind. Princeton.
8.4 - Online Resources
- www.exoplanets.org - Catalogue of discovered exoplanets. Enables online plotting of datasets and download of the data.
- www.habitableplanet.org - Web resources for Langmuir and Broecker's book, including slides and figures.
- http://hzgallery.org/ - List of planets specifically within their star's habitable zone. Includes plots of orbital characteristics of these systems and discussion of habitability criteria.
- http://depts.washington.edu/naivpl/content/hz-calculator -calculator - Online tool for calculating the location of habitable zones around stars. An implementation of the Kopparapu et al. 2013/2014 work.