skip to content
 

C3: Petrology Core Course

Please contact the  if you have trouble accessing any of the material on this list.

Metamorphic Petrology - Lectures 1-6 - Dave Waters

General reading

  • Philpotts, A. & Ague, J, 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Available from ESC Library Office.
  • Vernon, R. & Clarke, G. L., 2008. Principles of Metamorphic Petrology. Cambridge Univ. Press. Available from ESC Library Office.

Schreinemaker's rules and projections

  • Nordstrom, D. K. & Munoz, J. L., 1985. Geochemical thermodynamics. Blackwell. Chapter 4 is a good introduction. Available from ESC Library Office.
  • Yardley, B., 1989. An introduction to metamorphic petrology. Longman. Appendix provides a basic introduction. Available from ESC Library Office.
  • Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Chapters 5 and 8 are useful for this topic. Available from ESC Library Office.
  • Philpotts, A. & Ague, J, 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 8 has a good description of Schreinemaker's analysis. Available from ESC Library Office.

Pelites

  • Yardley, B., 1989. An introduction to metamorphic petrology. LongmanChapter 3 provides information on pelites. Available from ESC Library Office.
  • Philpotts, A. & Ague, J, 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 19 covers pelites. Available from ESC Library Office.

Mixed volatile equilibria

  • Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Chapter 12. Available from ESC Library Office.
  • Powell, R., 1979. Equilibrium thermodynamics in petrology: An introduction. Chapter 8. Available from ESC Library Office.
  • Yardley, B., 1989. An introduction to metamorphic petrology. LongmanChapter 5 provides information on mixed volatile equilibria. Available from ESC Library Office.
  • Philpotts, A. & Ague, J., 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 20 covers mixed volatile equilibria. Available from ESC Library Office.

Granulite facies

Oxidation/reduction and fluids

  • Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Chapter 18. Available from ESC Library Office.
  • Philpotts, A. & Ague, J., 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 11. Available from ESC Library Office.

Eclogite facies

Metasomatism

  • Philpotts, A. & Ague, J., 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 21. Available from ESC Library Office.

Igneous Petrology - Lectures 7-11 - Marian Holness

Introductory course on rock microstructures and their use to interpret rock history, with particular application to igneous assemblages.

General sources

  • Various authors, 2012. Granitic PegmatitesElements 8(4), number 4. There are many interesting articles touching on issues of crystal growth.
  • Cashman, K. V., 1990. Textural constraints on the kinetics of crystallization of igneous rocks. Reviews in mineralogy and geochemistry 24, 259-314. Available from ESC Library OfficeThis is a heavy-weight but comprehensive account.
  • Higgins, M. D., 2006. Quantitative textural measurements in igneous and metamorphic petrology. Cambridge Univ. Press. Available as an eBook. A good source if you are thinking of doing microstructural work in your Part III project
  • Kretz, R., 1994. Metamorphic Crystallisation. Wiley. Available from ESC Library Office.
  • Porter, D. A. & Easterling, K. E., 1981. Phase transformations in metals and alloys. Chapman and Hall. Available from ESC Library Office and on Course Moodle.
  • Vernon, R. H., 2004. A practical guide to rock microstructure. Cambridge Univ. Press. Available as an eBookHighly recommended, especially if you are planning to do a hard-rock PhD. This book is pretty much the first place to look if you need to understand any particular microstructure.

Lecture 7 - Crystal nucleation and growth

Nucleation and crystal growth

  • Cashman, K. V. & Mangan, M. T., 2014. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes, Professional Paper 1801-9
  • Kirkpatrick, R. J., 1981. Kinetics of crystallization of igneous rocks. Reviews in Mineralogy 8, 321-398. Available from ESC Library Office.

Crystal size distributions

Pattern formation during grain growth

Relevant to the first practical.

  • Boudreau, A. E., 1987. Pattern formation during crystallisation and the formation of fine-scale layering, in: Origins of igneous layering, (ed. Parson, I.,) D. Reidel, 453-471. Available from ESC Library Office.

Lecture 8 - Crystal shape

The basics of diffusion-limited growth

  • Porter, D. A. & Easterling, K. E., 1981. Phase transformations in metals and alloys. Chapman and Hall. Available from ESC Library Office and on Course Moodle.

Morphology 

 Eutectics and pegmatites

  • Lofgren, G., 1980. Experimental studies of the dynamic crystallisation of silicate melts, in: Physics of Magmatic Processes, Chapter 11, (ed. Hargraves, R. B.,) Princeton Univ. Press., 487-551. Available from ESC Library Office.

Lecture 9 - Textural equilibrium

Theory of textural equilibrium

Applications to natural systems

  • Hunter, R. H., 1987. Textural equilibrium in layered igneous rocks in: Origins of igneous layering, (ed. Parson, I.,)  D. Reidel, 473–503. Available from ESC Library Office.
  • Laporte, D., Rapaille, C., Provost, A., 1997. Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths, in: Granite: From segregation of melt to emplacement fabrics, (eds Bouchez, J.-L., Hutton, D. H., Stephens, W. E.,) Kluwer Academic Publishers, 31-45.

Lecture 10 - Microstructural evolution in cumulates

Physical processes in cumulates

  • Wager, L. R., Brown, G. M., Wadsworth, W. J., 1960. Types of igneous cumulatesJournal of Petrology 1, 73-85. doi:10.1093/petrology/1.1.73

Microstructures in cumulates and their interpretation

  • Hunter, R. H., 1996. Texture development in cumulate rocks, in: Layered Intrusions, (ed. Cawthorn, R.G.,) Elsevier, 77-101. Available from ESC Library Office.

Lecture 11 - Layered intrusions: Rum and Skaergaard

What is a magma chamber?

Rum

  • Emeleus, C. H., Cheadle, M. J., Hunter, R. H., Upton, B. G. J., Wadsworth, W. J., 1996. The Rum Layered Suite, in: Layered Intrusions, (ed. Cawthorn, R.G.,) Elsevier, 403-439. Available from ESC Library Office.

Skaergaard

  • McBirney, A. R., 1996. The Skaergaard intrusion, in: Layered Intrusions, (ed. Cawthorn, R.G.,) Elsevier, 147-180. Available from ESC Library Office.

Marie Edmonds - Lectures 12-14, Volcanic Processes

Pre-eruptive magma storage

General textbooks

  • Igneous and Metamorphic Petrology, by Myron Best, Wiley.
  • Principles of Igneous and Metamorphic Petrology, by Philpotts and Ague, Cambridge University Press.
  • Igneous Petrology, by McBirney, Jones and Bartlett.
  • Fundamentals of physical volcanology, by Parfitt and Wilson, Blackwell
  • Ore Deposit Geology, by Ridley, Cambridge University Press

Review/general papers

  • Cashman KV, Sparks RS. How volcanoes work: A 25 year perspective. Geological Society of America Bulletin. 2013 May 1;125(5-6):664-90.
  • Gonnermann, H., and M. Manga (2006), The fluid mechanics inside a volcano, Annual Reviews or Fluid Mechanics, 39, 321-356.
  • Scandone, R., K. Cashman, and S. Malone (2007), Magma supply, magma ascent and the style of volcanic eruptions, Earth and Planetary Science Letters, 253(3-4), 513-529.
  • Marsh, B. (1989), Magma chambers, Annual Review of Earth and Planetary Sciences, 17, 439-474.
  • Grove TL, Kinzler RJ. Petrogenesis of andesites. Annual Review of Earth and Planetary Sciences. 1986;14:417.
  • Turner SP, George RM, Evans PJ, Hawkesworth CJ, Zellmer GF. Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2000 May 15;358(1770):1443-64.
  • Bachmann O, Bergantz GW. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology. 2004 Aug 1;45(8):1565-82.

Magma degassing and ore deposits

Textbooks

  • *Fundamentals of Physical Volcanology, written by: Liz Parfitt, Lionel Wilson. Wiley.

Reviews/special volumes of journals:

Reviews in Mineralogy and Geochemistry:

  • Sulfur in Magmas and Melts, v. 73, 2011.
  • Minerals, Inclusions and Volcanic Processes v. 69, 2008.
  • Volatiles in Magmas, v. 30, 1994

Specific papers:

  • Halter WE, Pettke T, Heinrich CA. The origin of Cu/Au ratios in porphyrytype ore deposits. Science. 2002 Jun 7;296(5574):1844-6.
  • Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nature Geoscience. 2015 Mar 1;8(3):216-9.
  • Richards JP. The oxidation state, and sulfur and Cu contents of arc
  • magmas: implications for metallogeny. Lithos. 2015 Sep 15;233:27-45.

Volcanic eruptions

Magma rheology and eruption style

  • Cashman, K and J Blundy, 2000. Degassing and crystallization of ascending andesite and dacite. Phil. Trans. R. Soc. Lond. A 358, 1487-1513.

Lava domes

  • Melnik and Sparks, 1999. Nonlinear dynamics of lava dome extrusion. Nature 402, 37-41.
  • Sparks, R. S. J., 1997. Causes and consequences of pressurisation in lava dome eruptions, Earth Plan Sci Lett 50, 3-4, 177–189.

Fragmentation

  • Dingwell, D., 1996. Volcanic Dilemma--Flow or Blow? Science 273, 1054, DOI: 10.1126/science. 273.5278.1054.
  • Papale, P., 1999. Strain-induced fragmentation in volcanic eruptions. Nature 397, 425-428.
  • Rust, AC and KV Cashman, 2011. Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res, 116, B11202, 17 PP., 2011 doi:10.1029/2011JB008494.

Ed Tipper - Lectures 15-19, Isotope Geochemistry

Lecture 15

  • Allegre, C. J. et al., 1984. Earth and Planet. Sci. Lett., 67, 1 19–34.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • DePaolo, D. J. et al., 1976. Geophysical Research Letters, 3, 12 743–746. doi: 10.1029/GL003i012p00743.
  • Dhuime, B. et al., 2017. Sedimentary Geology, 357 16–32. doi: https://doi.org/10.1016/j.sedgeo.2017.06.001.
  • Goldstein, S. J. et al., 1988. Earth and Planetary Science Letters, 87, 3 249–265.
  • Hawkesworth, C. J. et al., 2006. Nature, 443, 7113 811–817. doi: 0.1038/nature05191.
  • Kemp, A. I. S. et al., 2006. Nature, 439, 7076 580–583.
  • Schoene, B. et al., 2014. 4.10 - U–Th–Pb Geochronology, pp. 341–378. Elsevier, Oxford. doi: http://dx.doi.org/10.1016/B978-0-08-095975-7.00310-7.

Lecture 16

  • Burkhardt, C. et al., 2016. Nature, 537 394 EP –.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • Caro, G. et al., 2003. Nature, 423, 6938 428–432.
  • Harrison, T. M., 2009. Annual Review of Earth and Planetary Sciences, 37, 1 479–505. doi: 10.1146/annurev.earth.031208.100151.
  • Kleine, T. et al., 2002. Nature, 418, 6901 952–955.
  • Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
  • Touboul, M. et al., 2007. Nature, 450, 7173 1206–1209.

Lecture 17

  • Herwartz, D. et al., 2014. Science, 344, 6188 1146–1150. doi: 10.1126/science.1251117.
  • Schauble, E. A., 2004. Rev. Min. Geochem., 55 65–112.
  • Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
  • Taylor, H. P. et al., 1962. Geological Society of America Bulletin, 73, 4 461–480. doi: 10.1130/0016- 7606(1962)73[461:RBORIC]2.0.CO;2.
  • Valley, J. W. et al., 2005. Contrib. to Min. Pet., 150, 6 561–580.
  • Young, E. D. et al., 2009. Earth and Planetary Science Letters, 288, 3-4 524–533.
  • Young, E. D. et al., 2016. Science, 351, 6272 493–496. doi: 10.1126/science.aad0525.

Lecture 18

  • Armytage, R. M. G. . et al., 2011. GEOCHIMICA ET COSMOCHIMICA ACTA, 75, 13 3662–3676. doi: 10.1016/j.gca.2011.03.044.
  • Badro, J. et al., 2015. Proceedings of the National Academy of Sciences, 112, 40 12310–12314. doi: 10.1073/pnas.1505672112.
  • Bourdon, B. et al., 2010. Geochim. Cosmochim. Act., 74, 17 5069–5083.
  • Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
  • Fitoussi, C. et al., 2009. Earth and Planet. Sci. Lett. Georg, R. B. et al., 2007. Nature, 447, 7148 1102–1106.
  • Savage, P. S. et al., 2014. Lithos, 190–191 500–519. doi: http://dx.doi.org/10.1016/j.lithos.2014.01.003.
  • Sedaghatpour, F. et al., 2013. Geochimica et Cosmochimica Acta, 120 1–16. doi: http://dx.doi.org/10.1016/j.gca.2013.06.026.
  • Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
  • Shahar, A. et al., 2011. Geochim. Cosmochim. Act., 75, 23 7688–7697. doi: 10.1016/j.gca.2011.09.038.
  • Stracke, A. et al., 2018. Geochimica et Cosmochimica Acta, 226 192–205. doi: https://doi.org/10.1016/j.gca.2018.02.002
  • Wiechert, U. et al., 2006. Earth and Planet. Sci. Lett., 256, 3-4 360–371. doi: 10.1016/j.epsl.2007.01.007
  • Young, E. D. et al., 2015. Chemical Geology, 395, 0 176–195. doi: http://dx.doi.org/10.1016/j.chemgeo.2014.12.013.

Lecture 19

  • Farley, K. A. et al., 1998. Annual Review of Earth and Planetary Sciences, 26, 1 189–218. doi: 10.1146/annurev.earth.26.1.189.
  • Javoy, M. et al., 1991. Earth and Planetary Science Letters, 107, 3–4 598–611. doi: http://dx.doi.org/10.1016/0012-821X(91)90104-P.
  • Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
  • Moreira, M., 2013. Geochemical Perspectives, 2, 2 229–230. Mukhopadhyay, S., 2012. Nature, 486, 7401 101–104. Parman, S. W. et al., 2005. Nature, 437, 7062 1140–1143.

John Mclennan - Lectures 20-24, Mantle Variability and Melting

Key References

Integration of melt production in corner flow:

Mantle composition, mineralogy, melting behaviour:

Thermodynamics of melting – following the adiabat

Normal
0

false
false
false

EN-GB
JA
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-fareast-language:EN-US;}

References in additional to previous lecture

Normal
0

false
false
false

EN-GB
JA
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-fareast-language:EN-US;}