C3: Petrology Core Course
Please contact the Earth Sciences Library if you have trouble accessing any of the material on this list.
Metamorphic Petrology - Lectures 1-6 - Dave Waters
General reading
- Philpotts, A. & Ague, J, 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Available from ESC Library Office.
- Vernon, R. & Clarke, G. L., 2008. Principles of Metamorphic Petrology. Cambridge Univ. Press. Available from ESC Library Office.
Schreinemaker's rules and projections
- Nordstrom, D. K. & Munoz, J. L., 1985. Geochemical thermodynamics. Blackwell. Chapter 4 is a good introduction. Available from ESC Library Office.
- Yardley, B., 1989. An introduction to metamorphic petrology. Longman. Appendix provides a basic introduction. Available from ESC Library Office.
- Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Chapters 5 and 8 are useful for this topic. Available from ESC Library Office.
- Philpotts, A. & Ague, J, 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 8 has a good description of Schreinemaker's analysis. Available from ESC Library Office.
Pelites
- Yardley, B., 1989. An introduction to metamorphic petrology. Longman. Chapter 3 provides information on pelites. Available from ESC Library Office.
- Droop, G. T. R., 1981. Alpine metamorphism of pelitic schists in the south east Tauern Window, Austria. Schweiz. Min. Pet. Mitt. 61, 237–273. doi:10.5169/seals-47140
- Philpotts, A. & Ague, J, 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 19 covers pelites. Available from ESC Library Office.
- Weller, O. M. et al., 2013. Quantifying Barrovian metamorphism in the Danba Structural Culmination of eastern Tibet. Journal of Metamorphic Geology 31, 909–935. doi:10.1111/jmg.12050
- White et al., 2014. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology 32, 261–286. doi:10.1111/jmg.12071
- White et al., 2014. The effect of Mn on mineral stability in metapelites revisited: New a–x relations for manganese-bearing minerals. Journal of Metamorphic Geology 32, 809–828. doi:10.1111/jmg.12095
Mixed volatile equilibria
- Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Chapter 12. Available from ESC Library Office.
- Powell, R., 1979. Equilibrium thermodynamics in petrology: An introduction. Chapter 8. Available from ESC Library Office.
- Yardley, B., 1989. An introduction to metamorphic petrology. Longman. Chapter 5 provides information on mixed volatile equilibria. Available from ESC Library Office.
- Baker, J. & Matthews, A., 1994. Textural and isotopic development of marble assemblages during the Barrovian-style M2 metamorphic event, Naxos, Greece. Contributions to Mineralogy and Petrology 116, 130-144. doi:10.1007/BF00310695
- Rice, J. M., 1977. Progressive metamorphism of impure dolomitic limestone in the Marysville Aureole, Montana. American Journal of Science 277, 1-24. doi:10.2475/ajs.277.1.1. Natural example of contact metamorphosed siliceous dolomites.
- Greenwood, H. J., 1975 Buffering of pore fluids by metamorphic reactions. American Journal of Science 275, 573-594. doi:10.2475/ajs.275.5.573. Simple no-infilltration calculations. Note that these do not allow for fixed porosity.
- Philpotts, A. & Ague, J., 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 20 covers mixed volatile equilibria. Available from ESC Library Office.
Granulite facies
- Harley, S. L., 1989. The origins of granulites: A metamorphic perspective. Geol. Mag. 126, 215–331. doi:10.1017/S0016756800022330
- Waters, D. J. & Whales, C. J., 1984. Dehydration melting and the granulite transition in metapelites from southern Namaqualand, South Africa. Contributions to Mineralogy and Petrology 88, 269–75. doi:10.1007/BF00380171
- Waters, D. J., 1988. Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa. Journal of Metamorphic Geology 6, 387–404. doi:10.1111/j.1525-1314.1988.tb00430.x
- Hansen, E. C., Newton, R. C., Janardhan, A. S., 1984. Fluid inclusions in rocks from the amphibolite-facies gneiss to charnockite progression in southern Karnataka, India: Direct evidence concerning the fluids of granulite facies metamorphism. Journal of Metamorphic Geology 2, 249–264. doi:10.1111/j.1525-1314.1984.tb00299.x
- Bohlen, S. R., 1991: On the formation of granulites. Journal of Metamorphic Geology 9, 223–229. doi:10.1111/j.1525-1314.1991.tb00518.x
- Lamb, W. M. & Valley, J. W., 1984. Metamorphism of reduced granulites in low-CO2 vapor-free environment. Nature 312, 56–58. doi:10.1038/312056a0
- Waters, D. J., 1991. Hercynite-quartz granulites: Phase relations, and implications for crustal processes. European Journal of Mineralogy 3, 367–386.
- Newton, R. C., Smith, J. V., Windley, B. F., 1980. Carbonic metamorphism, granulites and crustal growth. Nature 288, 45–50. doi:10.1038/288045a0
- Palin, R. M., et al., 2016. High-grade metamorphism and partial melting of basic and intermediate rocks. Journal of Metamorphic Geology 34, 871-892. doi:10.1111/jmg.12212
- Jennings, E. S. & Holland, T. J. B., 2015. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Pet 56, 869-892. doi:10.1093/petrology/egv020
- White, R. W., et al., 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 511-527. doi:10.1111/j.1525-1314.2007.00711.x
- Phillips, G. N., 1981. Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia. Contributions to Mineralogy and Petrology 75, 377-386. doi:10.1007/BF00374721
- Forbes, C. J., et al., 2008. Reinterpretation of the tectonic context of high-temperature metamorphism in the Broken Hill Block, NSW, and implications on the Palaeo- to Meso-Proterozoic evolution. Precambrian Research 166, 338-349. doi:10.1016/j.precamres.2006.12.017
- Also a useful guide on the web from Dave Waters: http://www.earth.ox.ac.uk/~davewa/research/granmig/granmig.html
Oxidation/reduction and fluids
- Ferry, J. M., 1981. Petrology of graphitic sulphide-rich schists from south central Maine. An example of desulfidation during prograde regional metamorphism. Am. Min. 66, 908–931.
- Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Chapter 18. Available from ESC Library Office.
- Poulson, S. R. & Ohmoto, H., 1989. Devolatilisation equilibria in graphite-pyrite-pyrrhotite bearing pelites with an application to magma-pelite interaction. Contributions to Mineralogy and Petrology 101, 418–425. doi:10.1007/BF00372215
- Frey, M., Bucher, K., Frank, E., Mullis, J., 1980. Alpine metamorphism along the geotraverse Basel–Chiasso - a review. Eclog. Geol. Helvet. 73, 527-546. doi:10.5169/seals-164971
- Philpotts, A. & Ague, J., 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 11. Available from ESC Library Office.
- Frost, D. J. & McCammon, C. A., 2008. The Redox State of Earth’s Mantle. Ann. Rev. Earth Planet. Sci. 36. doi:10.1146/annurev.earth.36.031207.124322
- Lazarov, M., et al., 2009. Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913-923. doi:10.1016/j.lithos.2009.03.035
Eclogite facies
- Holland, T. J. B., 1979. High water activities in the generation of high pressure kyanite eclogites of the Tauern Window, Austria. Journal of Geology 87, 1–27.
- Chopin, C., et al., 1991. Geology and petrology of the coesite-bearing terrain, Dora Maira massif, Western Alps. Eur. J. Min. 3, 263–291. doi:10.1127/ejm/3/2/0263
- Rubatto, D. et al., 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geoscience 4, 338–342, doi:10.1038/ngeo1124
- von Blanckenburg, F. & Davies, J. H., 1995. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 14, 120–131. doi:10.1029/94TC02051
- Dale, J. & Holland, T. J. B., 2003. Geothermobarometry, P–T paths and metamorphic field gradients of high-pressure rocks from the Adula Nappe, Central Alps. J. Met. Geol. 21, 813–829. doi:10.1046/j.1525-1314.2003.00483.x
- Rebay, G., et al., 2010. Calculated phase equilibria for a MORB composition in a P–T range 450-650C and 18-28 kbar: The stability of eclogite. J. Met. Geol. 28, 635–664. doi:10.1111/j.1525-1314.2010.00882.x
- Smye, A. J., Greenwood, L. V., Holland, T. J. B., 2010. Garnet–chloritoid–kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts. J. Met. Geol. 28, 753–776. doi:10.1111/j.1525-1314.2010.00889.x
- Smye, A. J., et al., 2011. Rapid formation and exhumation of the youngest Alpine eclogites: A thermal conundrum to Barrovian metamorphism. EPSL 306, 193–204. doi:10.1016/j.epsl.2011.03.037
- Warren, C. J., et al., 2008. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. EPSL 267, 129–145. doi:10.1016/j.epsl.2007.11.025
- Schmid, S. M., et al., 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae geol. Helv. 97, 93-117. doi:10.1007/s00015-004-1113-x
Metasomatism
- Brady, J. B., 1977. Metasomatic zones in metamorphic rocks. Geochim. Cosmochim. Acta. 41, 113-125. doi:10.1016/0016-7037(77)90191-0
- Glassley, W. E., 1983. Deep crustal carbonates as CO2 fluid sources: Evidence from metasomatic reaction zones. Cont. Min. Pet. 84, 15–24. doi:10.1007/BF01132326
- Thompson, A. B., 1975. Calc-silicate diffusion zones between marble and pelitic schist. J. Pet. 16, 314–334. doi:10.1093/petrology/16.1.314
- Fisher, G., 1978. Rate laws in metamorphism. Geochim. Cosmochim. Acta 42, 1035–1050. doi:10.1016/0016-7037(78)90292-2
- Miller, D. P., et al., 2009. Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface. Lithos 107, 53–67. doi:10.1016/j.lithos.2008.07.015
- Philpotts, A. & Ague, J., 2009. Principles of Igneous and Metamorphic Petrology. Cambridge Univ. Press, 2nd edition. Chapter 21. Available from ESC Library Office.
Igneous Petrology - Lectures 7-11 - Marian Holness
Introductory course on rock microstructures and their use to interpret rock history, with particular application to igneous assemblages.
General sources
- Various authors, 2012. Granitic Pegmatites. Elements 8(4), number 4. There are many interesting articles touching on issues of crystal growth.
- Cashman, K. V., 1990. Textural constraints on the kinetics of crystallization of igneous rocks. Reviews in mineralogy and geochemistry 24, 259-314. Available from ESC Library Office. This is a heavy-weight but comprehensive account.
- Higgins, M. D., 2006. Quantitative textural measurements in igneous and metamorphic petrology. Cambridge Univ. Press. Available as an eBook. A good source if you are thinking of doing microstructural work in your Part III project
- Kretz, R., 1994. Metamorphic Crystallisation. Wiley. Available from ESC Library Office.
- Porter, D. A. & Easterling, K. E., 1981. Phase transformations in metals and alloys. Chapman and Hall. Available from ESC Library Office and on Course Moodle.
- Tiller, W. A., 1977. On the cross-pollenation of crystallisation ideas between metallurgy and geology. Physics and Chemistry of Minerals 2, 125-151. doi:10.1007/BF00307528
- Vernon, R. H., 2004. A practical guide to rock microstructure. Cambridge Univ. Press. Available as an eBook. Highly recommended, especially if you are planning to do a hard-rock PhD. This book is pretty much the first place to look if you need to understand any particular microstructure.
Lecture 7 - Crystal nucleation and growth
Nucleation and crystal growth
- Cashman, K. V. & Mangan, M. T., 2014. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes, Professional Paper 1801-9
- Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., Cavallo, A., 2009. “Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites. Geology 37, 627-630. doi:10.1130/G25759A.1
- Davis, M. J., & Ihinger, P. D., 1998. Heterogeneous nucleation on bubbles in silicate melt. American Mineralogist 83(9-10), 1008-1015. doi:10.2138/am-1998-9-1008
- Hammer, J. E., Sharp, T. G., Wessel, P., 2010. Heterogeneous nucleation and epitaxial crystal growth of magmatic minerals. Geology 38(4), 367-370. doi:10.1130/G30601.1
- Katz, M. G. & Cashman, K. V., 2003. Hawaiian lava flows in the third dimension: Identification and interpretation of pahoehoe and 'a'a distribution in the KP-1 and SOH-4 cores. Geochemistry, Geophysics, Geosystems 4(2), 8705. doi:10.1029/2001GC000209
- Kirkpatrick, R. J., 1981. Kinetics of crystallization of igneous rocks. Reviews in Mineralogy 8, 321-398. Available from ESC Library Office.
- Marsh, B. D., 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation. Contributions to Mineralogy and Petrology 99, 277-291. doi:10.1007/BF00375362
- Putnis, A. & Mauthe, G., 2001. The effect of pore size on cementation in porous rocks. Geofluids 1, 37-41. doi:10.1046/j.1468-8123.2001.11001.x
- Roselle, G. T., Baumgartner, L. P., Chapman, J. A., 1997. Nucleation-dominated crystallisation of forsterite in the Ubehebe Peak contact aureole, California. Geology 25, 823-826. doi:10.1130/0091-7613(1997)025<0823:NDCOFI>2.3.CO;2
- Swanson, S. E., 1977. Relation of nucleation and crystal-growth rate to the development of granitic textures. American Mineralogist 62, 966-978.
Crystal size distributions
- Cashman, K. V., 1988. Crystallisation of Mount St. Helen’s 1980-1986 dacite: A quantitative textural approach. Bulletin of Volcanology 50, 194-209. doi:10.1007/BF01079682
- Marsh, B. D., 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation. Contributions to Mineralogy and Petrology 99, 277-291. doi:10.1007/BF00375362
- Roselle, G. T., Baumgartner, L. P., Chapman, J. A., 1997. Nucleation-dominated crystallisation of forsterite in the Ubehebe Peak contact aureole, California. Geology 25, 823-826. doi:10.1130/0091-7613(1997)025<0823:NDCOFI>2.3.CO;2
- Swanson, S. E., 1977. Relation of nucleation and crystal-growth rate to the development of granitic textures. American Mineralogist 62, 966-978.
Pattern formation during grain growth
Relevant to the first practical.
- Boudreau, A. E., 1987. Pattern formation during crystallisation and the formation of fine-scale layering, in: Origins of igneous layering, (ed. Parson, I.,) D. Reidel, 453-471. Available from ESC Library Office.
- Holness, M. B., 1997. Geochemical self-organization of olivine-grade contact-metamorphosed chert nodules in dolomite marble, Kilchrist, Skye. Journal of Metamorphic Geology 15, 765-776. doi:10.1111/j.1525-1314.1997.00050.x
Lecture 8 - Crystal shape
The basics of diffusion-limited growth
- Porter, D. A. & Easterling, K. E., 1981. Phase transformations in metals and alloys. Chapman and Hall. Available from ESC Library Office and on Course Moodle.
Morphology
- Donaldson, C. H., 1974. Olivine crystal types in harrisitic rocks of the Rhum pluton and in Archean spinifex rocks. Geological Society of America Bulletin 85, 1721-1726. doi:10.1130/0016-7606(1974)85<1721:OCTIHR>2.0.CO;2
- Donaldson, C. H., 1976. An experimental investigation of olivine morphology. Contributions to Mineralogy and Petrology 57, 187-213. doi:10.1007/BF00405225
- Esbensen, K. H. & Buchwald, V. F., 1982. Planet(oid) core crystallisation and fractionation – evidence form the Agpalilik mass of the Cape York iron meteorite shower. Physics of the Earth and Planetary Interiors 29, 218-232. doi:10.1016/0031-9201(82)90013-9
- Faure, F., Trolliard, G., Nicollet, C., Montel, J.-M., 2003. A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contributions to Mineralogy and Petrology 145, 251-263. doi:10.1007/s00410-003-0449-y
- Jamtveit, B., & Andersen, T. B., 1992. Morphological instabilities during rapid growth of metamorphic garnets. Physics and Chemistry of Minerals 19, 176-184. doi:10.1007/BF00202106
- Keith, H. D. & Padden, F. J., 1963. A phenomenological theory of spherulitic crystallisation. Journal of Applied Physics 34, 2409-2421. doi:10.1063/1.1702757
- Lofgren, G., 1971. Spherulitic textures in glassy and crystalline rocks. Journal of Geophysical Research 76, 5635-5648. doi:10.1029/JB076i023p05635
- Shore, M. & Fowler, A. D., 1999. The origin of spinifex texture in komatiites. Nature 397, 691-694. doi:10.1038/17794
Eutectics and pegmatites
- Fenn, P. M., 1986. On the origin of graphic granite. American Mineralogist 71, 323-330.
- Lentz, D. R. & Fowler, A. D., 1992. A dynamic model for graphic quartz-feldspar intergrowths in granitic pegmatites in the southwestern Grenville Province. Canadian Mineralogist, 30, 571-585.
- Lofgren, G., 1980. Experimental studies of the dynamic crystallisation of silicate melts, in: Physics of Magmatic Processes, Chapter 11, (ed. Hargraves, R. B.,) Princeton Univ. Press., 487-551. Available from ESC Library Office.
- London, D., 2009. The origin of primary textures in granitic pegmatites. Canadian Mineralogist 47, 697-724. doi:10.3749/canmin.0000000
Lecture 9 - Textural equilibrium
Theory of textural equilibrium
- Beere, W., 1975. A unifying theory of the stability of penetrating liquid phases and sintering pores. Acta Metallurgica 23, 131-145. doi:10.1016/0001-6160(75)90078-4
- Bulau, J. R., Waff, H. S., Tyburczy, J. A., 1979. Mechanical and thermodynamic constraints on fluid distribution in partial melts. Journal of Geophysical Research 84, 6102-6108. doi:10.1029/JB084iB11p06102
- Holness, M. B., 1993. Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: The control of adsorbed H2O on the permeability of quartzites. Earth Planetary Science Letters 117, 363-377. doi:10.1016/0012-821X(93)90090-V
- Holness, M. B., 2006. Melt-solid dihedral angles of common minerals in natural rocks. Journal of Petrology 47, 791-800. doi:10.1093/petrology/egi094
- Laporte D. & Provost, A., 2000. Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: Dry grain boundaries. Journal of Geophysical Research 105, 25937-25953. doi:10.1029/2000JB900256
Applications to natural systems
- Bruhn, D., Groebner, N., Kohlstedt, D. L., 2000. An interconnected network of core-forming melts produced by shear deformation. Nature 403, 883-886. doi:10.1038/35002558
- Cheadle, M. J., Elliott, M. T., McKenzie, D., 2004. Percolation threshold and permeability of crystallising igneous rocks: The importance of textural equilibrium. Geology 32, 757-760. doi:10.1130/G20495.1
- Ghanbarzadeh, S., Hesse, M. A., Prodanovic, M., Gardner, J. E., 2015. Deformation-assisted fluid percolation in rock salt. Science 350, 1069-1072. doi:10.1126/science.aac8747
- Holness, M. B., 2006. Melt-solid dihedral angles of common minerals in natural rocks. Journal of Petrology 47, 791-800. doi:10.1093/petrology/egi094
- Hunter, R. H., 1987. Textural equilibrium in layered igneous rocks in: Origins of igneous layering, (ed. Parson, I.,) D. Reidel, 473–503. Available from ESC Library Office.
- Laporte, D., Rapaille, C., Provost, A., 1997. Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths, in: Granite: From segregation of melt to emplacement fabrics, (eds Bouchez, J.-L., Hutton, D. H., Stephens, W. E.,) Kluwer Academic Publishers, 31-45.
- Laporte, D. & Watson, E. B., 1995. Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chemical Geology 124, 161-184. doi:10.1016/0009-2541(95)00052-N
- Minarik, W. G. & Watson, E. B., 1995. Interconnectivity of carbonate melt at low melt fraction. Earth and Planetary Science Letters 133, 423-437. doi:10.1016/0012-821X(95)00085-Q
- Shi, C. Y. et al., 2013. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nature Geoscience 6, 971-975. doi:10.1038/ngeo1956
Lecture 10 - Microstructural evolution in cumulates
Physical processes in cumulates
- Holness, M. B., Vukmanovic, Z., Mariani, E., 2017. Assessing the role of compaction in the formation of adcumulates: A microstructural perspective. Journal of Petrology 58, 643-674. doi:10.1093/petrology/egx037
- Morse, S. A., 1986. Convection in aid of adcumulus growth. Journal of Petrology 27, 1183-1214. doi:10.1093/petrology/27.5.1183
- Sparks, R. S. J., Huppert, H. E., Kerr, R. C., McKenzie, D. P., Tait, S. R., 1985. Postcumulus processes in layered intrusions. Geological Magazine, 122, 555-568. doi:10.1017/S0016756800035470
- Tait, S. R. & Jaupart, C., 1992. Compositional convection in a reactive crystalline mush and melt differentiation. Journal of Geophysical Research 97, 6735-6756. doi:10.1029/92JB00016
- Wager, L. R., Brown, G. M., Wadsworth, W. J., 1960. Types of igneous cumulates. Journal of Petrology 1, 73-85. doi:10.1093/petrology/1.1.73
Microstructures in cumulates and their interpretation
- Boorman, S., Boudreau, A., Kruger, F. J., 2004. The lower zone – critical zone transition of the Bushveld Complex: A quantitative textural study. Journal of Petrology 45, 1209-1235. doi:10.1093/petrology/egh011
- Campbell, I. H., 1987. Distribution of orthocumulate textures in the Jimberlana Intrusion. Journal of Geology 95, 35-54.
- Holness, M. B., 2015. Plagioclase growth rates control three-grain junction geometry in dolerites and gabbros. Journal of Petrology 56, 2117-2144. doi:10.1093/petrology/egv065
- Holness, M. B. et al., 2007. Textures in partially solidified crystalline nodules: A window into the pore structure of slowly cooled mafic intrusions. Journal of Petrology 48, 1243-1264. doi:10.1093/petrology/egm016
- Holness, M. B., Humphreys, M. C. S., Sides, R., Helz, R. T., Tegner, C., 2012. Towards an understanding of disequilibrium dihedral angles in mafic rocks. Journal of Geophysical Research 117, B06207. doi:10.1029/2011JB008902
- Holness, M. B., Richardson, C., Helz, R. T., 2012. Disequilibrium dihedral angles in dolerite sills: a new proxy for cooling rate. Geology 40, 795-798. doi:10.1130/G33119.1
- Holness, M. B., Namur, O., Cawthorn, R. G., 2013. Disequilibrium dihedral angles in layered intrusions: A microstructural record of fractionation. Journal of Petrology 54, 2067-2093. doi:10.1093/petrology/egt041
- Hunter, R. H., 1996. Texture development in cumulate rocks, in: Layered Intrusions, (ed. Cawthorn, R.G.,) Elsevier, 77-101. Available from ESC Library Office.
- Walker, D., Jurewicz, S., Watson, E. B., 1988. Adcumulus dunite growth in a laboratory thermal gradient. Contributions to Mineralogy and Petrology 99, 306-319. doi:10.1007/BF00375364
Lecture 11 - Layered intrusions: Rum and Skaergaard
What is a magma chamber?
- Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 355, eaag3055. doi:10.1126/science.aag3055
Rum
- Emeleus, C. H., Cheadle, M. J., Hunter, R. H., Upton, B. G. J., Wadsworth, W. J., 1996. The Rum Layered Suite, in: Layered Intrusions, (ed. Cawthorn, R.G.,) Elsevier, 403-439. Available from ESC Library Office.
- Emeleus, C. H., 1997. Geology of Rum and the adjacent islands. Memoir of the British Geological Survey, Sheet 60.
- Holness, M. B. & Winpenny, B., 2008. The Unit 12 allivalite, Eastern Layered Intrusion, Isle of Rum: A textural and geochemical study of an open-system magma chamber. Geological Magazine, 146, 437-450. doi:10.1017/S0016756808005797
- O’Driscoll, B., Donaldson, C. H., Troll, V. R., Jerram, D. A., Emeleus, C. H., 2007. An origin for harrisitic and granular olivine in the Rum Layered Suite, NW Scotland: A crystal size distribution study. Journal of Petrology 48, 253-270. doi:10.1093/petrology/egl059
- Troll, V., Emeleus, C. H., Donaldson, C. H., 2000. Caldera formation in the Rum Central Igneous Complex, Scotland. Bulletin of Volcanology 62, 301-317. doi:10.1007/s004450000099
Skaergaard
- Holness, M. B., Stripp, G., Humphreys, M. C. S., Veklser, I. V., Nielsen, T. F. D., Tegner, C., 2011. Silicate liquid immiscibility within the crystal mush: Late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland. Journal of Petrology 52, 175-222. doi:10.1093/petrology/egq077
- Irvine, T. N., Andersen, J. C. Ø., Brooks, C. K., 1998. Included blocks (and blocks within blocks) in the Skaergaard intrusion: Geological relations and the origins of rhythmic modally graded layers. Geological Society of America Bulletin 110, 1398-1447. doi:10.1130/0016-7606(1998)110<1398:IBABWB>2.3.CO;2
- Jakobsen, J. K., Veksler, I. V., Tegner, C., Brooks, C. K., 2005. Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard Intrusion. Geology 33, 885-888. doi:10.1130/G21724.1
- McBirney, A. R., 1996. The Skaergaard intrusion, in: Layered Intrusions, (ed. Cawthorn, R.G.,) Elsevier, 147-180. Available from ESC Library Office.
Marie Edmonds - Lectures 12-14, Volcanic Processes
Pre-eruptive magma storage
General textbooks
- Igneous and Metamorphic Petrology, by Myron Best, Wiley.
- Principles of Igneous and Metamorphic Petrology, by Philpotts and Ague, Cambridge University Press.
- Igneous Petrology, by McBirney, Jones and Bartlett.
- Fundamentals of physical volcanology, by Parfitt and Wilson, Blackwell
- Ore Deposit Geology, by Ridley, Cambridge University Press
Review/general papers
- Cashman KV, Sparks RS. How volcanoes work: A 25 year perspective. Geological Society of America Bulletin. 2013 May 1;125(5-6):664-90.
- Gonnermann, H., and M. Manga (2006), The fluid mechanics inside a volcano, Annual Reviews or Fluid Mechanics, 39, 321-356.
- Scandone, R., K. Cashman, and S. Malone (2007), Magma supply, magma ascent and the style of volcanic eruptions, Earth and Planetary Science Letters, 253(3-4), 513-529.
- Marsh, B. (1989), Magma chambers, Annual Review of Earth and Planetary Sciences, 17, 439-474.
- Grove TL, Kinzler RJ. Petrogenesis of andesites. Annual Review of Earth and Planetary Sciences. 1986;14:417.
- Turner SP, George RM, Evans PJ, Hawkesworth CJ, Zellmer GF. Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2000 May 15;358(1770):1443-64.
- Bachmann O, Bergantz GW. On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology. 2004 Aug 1;45(8):1565-82.
Magma degassing and ore deposits
Textbooks
- *Fundamentals of Physical Volcanology, written by: Liz Parfitt, Lionel Wilson. Wiley.
Reviews/special volumes of journals:
Reviews in Mineralogy and Geochemistry:
- Sulfur in Magmas and Melts, v. 73, 2011.
- Minerals, Inclusions and Volcanic Processes v. 69, 2008.
- Volatiles in Magmas, v. 30, 1994
Specific papers:
- Halter WE, Pettke T, Heinrich CA. The origin of Cu/Au ratios in porphyrytype ore deposits. Science. 2002 Jun 7;296(5574):1844-6.
- Mungall JE, Brenan JM, Godel B, Barnes SJ, Gaillard F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nature Geoscience. 2015 Mar 1;8(3):216-9.
- Richards JP. The oxidation state, and sulfur and Cu contents of arc
- magmas: implications for metallogeny. Lithos. 2015 Sep 15;233:27-45.
Volcanic eruptions
Magma rheology and eruption style
- Cashman, K and J Blundy, 2000. Degassing and crystallization of ascending andesite and dacite. Phil. Trans. R. Soc. Lond. A 358, 1487-1513.
Lava domes
- Melnik and Sparks, 1999. Nonlinear dynamics of lava dome extrusion. Nature 402, 37-41.
- Sparks, R. S. J., 1997. Causes and consequences of pressurisation in lava dome eruptions, Earth Plan Sci Lett 50, 3-4, 177–189.
Fragmentation
- Dingwell, D., 1996. Volcanic Dilemma--Flow or Blow? Science 273, 1054, DOI: 10.1126/science. 273.5278.1054.
- Papale, P., 1999. Strain-induced fragmentation in volcanic eruptions. Nature 397, 425-428.
- Rust, AC and KV Cashman, 2011. Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res, 116, B11202, 17 PP., 2011 doi:10.1029/2011JB008494.
Ed Tipper - Lectures 15-19, Isotope Geochemistry
Lecture 15
- Allegre, C. J. et al., 1984. Earth and Planet. Sci. Lett., 67, 1 19–34.
- Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
- DePaolo, D. J. et al., 1976. Geophysical Research Letters, 3, 12 743–746. doi: 10.1029/GL003i012p00743.
- Dhuime, B. et al., 2017. Sedimentary Geology, 357 16–32. doi: https://doi.org/10.1016/j.sedgeo.2017.06.001.
- Goldstein, S. J. et al., 1988. Earth and Planetary Science Letters, 87, 3 249–265.
- Hawkesworth, C. J. et al., 2006. Nature, 443, 7113 811–817. doi: 0.1038/nature05191.
- Kemp, A. I. S. et al., 2006. Nature, 439, 7076 580–583.
- Schoene, B. et al., 2014. 4.10 - U–Th–Pb Geochronology, pp. 341–378. Elsevier, Oxford. doi: http://dx.doi.org/10.1016/B978-0-08-095975-7.00310-7.
Lecture 16
- Burkhardt, C. et al., 2016. Nature, 537 394 EP –.
- Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
- Caro, G. et al., 2003. Nature, 423, 6938 428–432.
- Harrison, T. M., 2009. Annual Review of Earth and Planetary Sciences, 37, 1 479–505. doi: 10.1146/annurev.earth.031208.100151.
- Kleine, T. et al., 2002. Nature, 418, 6901 952–955.
- Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
- Touboul, M. et al., 2007. Nature, 450, 7173 1206–1209.
Lecture 17
- Herwartz, D. et al., 2014. Science, 344, 6188 1146–1150. doi: 10.1126/science.1251117.
- Schauble, E. A., 2004. Rev. Min. Geochem., 55 65–112.
- Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
- Taylor, H. P. et al., 1962. Geological Society of America Bulletin, 73, 4 461–480. doi: 10.1130/0016- 7606(1962)73[461:RBORIC]2.0.CO;2.
- Valley, J. W. et al., 2005. Contrib. to Min. Pet., 150, 6 561–580.
- Young, E. D. et al., 2009. Earth and Planetary Science Letters, 288, 3-4 524–533.
- Young, E. D. et al., 2016. Science, 351, 6272 493–496. doi: 10.1126/science.aad0525.
Lecture 18
- Armytage, R. M. G. . et al., 2011. GEOCHIMICA ET COSMOCHIMICA ACTA, 75, 13 3662–3676. doi: 10.1016/j.gca.2011.03.044.
- Badro, J. et al., 2015. Proceedings of the National Academy of Sciences, 112, 40 12310–12314. doi: 10.1073/pnas.1505672112.
- Bourdon, B. et al., 2010. Geochim. Cosmochim. Act., 74, 17 5069–5083.
- Caro, G., 2011. Annual Review of Earth and Planetary Sciences, 39, 1 31–58. doi: 10.1146/annurev-earth-040610-133400.
- Fitoussi, C. et al., 2009. Earth and Planet. Sci. Lett. Georg, R. B. et al., 2007. Nature, 447, 7148 1102–1106.
- Savage, P. S. et al., 2014. Lithos, 190–191 500–519. doi: http://dx.doi.org/10.1016/j.lithos.2014.01.003.
- Sedaghatpour, F. et al., 2013. Geochimica et Cosmochimica Acta, 120 1–16. doi: http://dx.doi.org/10.1016/j.gca.2013.06.026.
- Shahar, A. et al., 2007. Earth and Planetary Science Letters, 257, 3–4 497–510. doi: http://dx.doi.org/10.1016/j.epsl.2007.03.012.
- Shahar, A. et al., 2011. Geochim. Cosmochim. Act., 75, 23 7688–7697. doi: 10.1016/j.gca.2011.09.038.
- Stracke, A. et al., 2018. Geochimica et Cosmochimica Acta, 226 192–205. doi: https://doi.org/10.1016/j.gca.2018.02.002
- Wiechert, U. et al., 2006. Earth and Planet. Sci. Lett., 256, 3-4 360–371. doi: 10.1016/j.epsl.2007.01.007
- Young, E. D. et al., 2015. Chemical Geology, 395, 0 176–195. doi: http://dx.doi.org/10.1016/j.chemgeo.2014.12.013.
Lecture 19
- Farley, K. A. et al., 1998. Annual Review of Earth and Planetary Sciences, 26, 1 189–218. doi: 10.1146/annurev.earth.26.1.189.
- Javoy, M. et al., 1991. Earth and Planetary Science Letters, 107, 3–4 598–611. doi: http://dx.doi.org/10.1016/0012-821X(91)90104-P.
- Li, C. et al., 2008. Geochemistry, Geophysics, Geosystems, 9, 5 n/a–n/a. doi: 10.1029/2007GC001806.
- Moreira, M., 2013. Geochemical Perspectives, 2, 2 229–230. Mukhopadhyay, S., 2012. Nature, 486, 7401 101–104. Parman, S. W. et al., 2005. Nature, 437, 7062 1140–1143.
John Mclennan - Lectures 20-24, Mantle Variability and Melting
Key References
Integration of melt production in corner flow:
- McKenzie, D., The generation and compaction of partially molten rock, Journal of Petrology, 25, 713-765, 1984 [Especially Section 5 and Appendix D]
- McKenzie, D., & Bickle, M.J., The volume and composition of melt generated by extension of the lithosphere, Journal of Petrology, 29, 625-679, 1988 [Sections 1-4]
- White, R.S., McKenzie, D. & O’Nions, R.K., Oceanic crustal thickness from seismic measurements and rare earth element inversions, Journal of Geophysical Research, 97, 19683-19715, 1992 [Appendix A]
- Slater, L. , McKenzie, D., Gronvold, K. & Shimizu, N, Melt generation and movement beneath Theistareykir, NE Iceland, Journal of Petrology, 42, 321-354, 2001 [Useful theoretical ideas]
Mantle composition, mineralogy, melting behaviour:
- Workman, R.K. & Hart, S.R., Major and trace element composition of the depleted MORB mantle (DMM), Earth and Planetary Science Letters, 231, 53-72, 2005.
- McDonough, W.F., & Sun, S.-s., The composition of the Earth, Chemical Geology, 120, 223-253, 1995.
- Davis F. A., Tangeman J. A., Tenner T. J., Hirschmann M. M. The composition of KLB-1 peridotite. American Mineralogist 94, 176–180, 2009. [Quickly note bulk comp]
- Walter M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29–60, 1998. [Note bulk comp – thorough experimental study]
- Ghiorso, M. S., and M. M. Hirschmann, P. W. Reiners, V. C. Kress III, The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochem. Geophys. Geosyst., 3(5), doi:10.1029/2001GC000217, 2002.
- Jennings, E.S., & Holland, T.J.B., A simple thermodynamic model for melting of peridotite in the system NCFMASOCr, Journal of Petrology, 56, 869-892, 2015
Thermodynamics of melting – following the adiabat
- McKenzie, D., The generation and compaction of partially molten rock, Journal of Petrology, 25, 713-765, 1984 [Especially Section 5 and Appendix D]
- McKenzie, D., & Bickle, M.J., The volume and composition of melt generated by extension of the lithosphere, Journal of Petrology, 29, 625-679, 1988 [Sections 1-4]
- Katz, R., Spiegelman, M. & Langmuir, C.H., A new parametrization of hydrous mantle melting, Geochem. Geophys. Geosyst.,4, 1073, , 2003.
- Melting heterogeneous mantle
- Shorttle, O., Maclennan, J., & Lambart, S., Quantifying lithological variability in the mantle. Earth and Planetary Science Letters 395, 24-40, 2014.
- Ito, G. and J. J. Mahoney, Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts, Earth Planet. Sci. Lett., 230, 29-46, 2005
- Phipps Morgan, J., Thermodynamics of pressure release melting of a veined plum pudding mantle Geochem. Geophys. Geosyst., 2,, 2001.
Normal
0
false
false
false
EN-GB
JA
X-NONE
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-fareast-language:EN-US;}
References in additional to previous lecture
- *Blundy, J., & Wood, B., Partitioning of trace elements between crystals and melts, Earth and Planetary Science Letters, 210, 383-397, 2003.
- *Klein, E. M., and C. H. Langmuir, Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92(B8), 8089–8115, 1987
- *Kelemen, P.B., G Hirth, N Shimizu, M Spiegelman, A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges, Philosophical Transactions of the Royal Society of London, 355, 283-318, 1997
- *Dalton, C.A., C.H. Langmuir, and A. Gale (2014), Geophysical and Geochemical Evidence for Deep Temperature Variations Beneath Mid-Ocean Ridges, Science: 344 (6179), 80-83. [DOI:10.1126/science.1249466]
- * Matthews, S. and Shorttle, O. and Maclennan, J. (2016) The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry. Geochemistry, Geophysics, Geosystems, 17 (11). pp. 4725-4752. ISSN 1525-2027 DOI 10.1002/2016GC006497
- Salters, VJM, Longhi, JE, Bizimis, M, Near mantle solidus trace element partitioning at pressures up to 3.4 GPa, Geochemistry, Geophysics, Geosystems, 3, Art. No. 1038, 2002
- White, R.S., Minshull, T.A., Bickle, M.J. and Robinson, C.J., Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. Journal of Petrology, 42, (6), 1171-1196, 2001
- Maclennan J, McKenzie D, Gronvold K, Plume-driven upwelling under central Iceland, Earth and Planetary Science Letters LETTERS 194 (1-2): 67-82, 2001
- B. Bourdon, A. Zindler, T. Elliott, C. Langmuir, Constraints on mantle melting at mid-ocean ridges from global 238U–230Th disequilibrium data, Nature 384, 231–235, 1996
- Shaw, D.M., Trace elements in magmas, Cambridge University Press, 2006
- S.A. Gibson, D. Geist, Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos, Earth and Planetary Science Letters, Volume 300, 275-286, 2010
Normal
0
false
false
false
EN-GB
JA
X-NONE
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:10.0pt;
mso-para-margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri","sans-serif";
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-fareast-language:EN-US;}