C2: Ancient Life and Environments (ALE) Core Course
The following references have been highlighted by your lecturers as being particularly useful. However, this list is not exhaustive and there may be additional references in your lecture handouts.
Please contact the Earth Sciences Library if you have trouble accessing any of the material on this list.
Lecture order may be different due to timing of the Norfolk trip.
Lecture 2 - Neil Davies
- Andrews, J. E. et al., 2000. Sedimentary evolution of the north Norfolk barrier coastline in the context of Holocene sea-level change. Geological Society, London, Special Publications 166, 219–251. doi:10.1144/GSL.SP.2000.166.01.12. Available from ESC Library Office and on Course Moodle.
- Flemming, B. W., 2012. Siliciclastic back-barrier tidal flats, in: Principles of Tidal Sedimentology (eds Davis, R. A. & Dalrymple, R. W.), Springer Netherlands, 231–267. doi:10.1007/978-94-007-0123-6_10. Available on Course Moodle.
Lecture 3
- Myrow, P. M., Lamb, M. P., Ewing, R. C., 2018. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth. Science 360, 649–651. doi:10.1126/science.aap8612
- Reynaud, J. & Dalrymple, R. W., 2012. Shallow-marine tidal deposits, in: Principles of Tidal Sedimentology (eds Davis, R. A. & Dalrymple, R. W.), Springer Netherlands, 335–69. doi:10.1007/978-94-007-0123-6_13. Available on Course Moodle.
- Spencer, T. et al., 2015. Southern North Sea storm surge event of 5 December 2013: Water levels, waves and coastal impacts. Earth-Science Reviews 146, 120–45. doi:10.1016/j.earscirev.2015.04.002
- van Straaten, L. M. J. U. & Kuenen, P. H., 1957. Accumulation of fine-grained sediments in the Dutch Wadden Sea. Geologie en Mijnbouw 19, 329–354. Available on Course Moodle.
Lecture 4
- Bartholdy, J., 2012. Salt marsh sedimentation, in: Principles of Tidal Sedimentology (eds Davis, R. A. & Dalrymple, R. W.), Springer Netherlands, 151–185. doi:10.1007/978-94-007-0123-6_8. Available on Course Moodle.
- Cuadrado, D. G., Perillo, G. M. E., Vitale, A. J., 2014. Modern microbial mats in siliciclastic tidal flats: Evolution, structure and the role of hydrodynamics. Marine Geology 352, 367–80. doi:10.1016/j.margeo.2013.10.002
- Davies, N. S., Liu, A. G., Gibling, M. R., Miller, R. F., 2016. Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews 154, 210–46. doi:10.1016/j.earscirev.2016.01.005
- Dorgan, K. M., 2015. The biomechanics of burrowing and boring. Journal of Experimental Biology 218(2), 176–183. doi:10.1242/jeb.086983
- Dorgan, K. M., Jumars, P., Johnson, B., Boudreau, B., 2006. Macrofaunal burrowing: The medium is the message, in: Oceanography and marine biology: An annual review 44, (eds Gibson, R. N., Atkinson, R. J. A., Gordon, J. D. M.), CRC Press, 85-121. Access only available from an affiliated library, i.e., the Betty & Gordon Moore Library or the Haddon Library.
- Gerdes, G., Klenke,T. , Noffke, N., 2000. Microbial signatures in peritidal siliciclastic sediments: A catalogue. Sedimentology 47(2), 279–308. doi:10.1046/j.1365-3091.2000.00284.x
- Gingras, M. K. & MacEachern, J. A., 2012. Tidal ichnology of shallow-water clastic settings, in Principles of Tidal Sedimentology (eds Davis, R. A. & Dalrymple, R. W.), Springer Netherlands, 57–77. doi:10.1007/978-94-007-0123-6_4. Available on Course Moodle.
- Gunnell, J. R., Rodriguez, A. B., McKee, B. A., 2013. How a marsh is built from the bottom up. Geology 41(8), 859–862. doi:10.1130/G34582.1
- Malarkey, J. et al., 2015. The pervasive role of biological cohesion in bedform development. Nature Communications 6(1), 6257. doi:10.1038/ncomms7257
Lecture 5 - Sasha Turchyn
- Cuadrado, D. G., Perillo, G. M. E., Vitale, A. J., 2014. Modern microbial mats in siliciclastic tidal flats: Evolution, structure and the role of hydrodynamics. Marine Geology 352, 367–80. doi:10.1016/j.margeo.2013.10.002
- Friedrich, M. W. & Finster, K. W., 2014. How sulfur beats iron. Science 344, 974–75. doi:10.1126/science.1255442
- Froelich, P. N. et al., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta 43(7), 1075–1090. doi:10.1016/0016-7037(79)90095-4
- Nealson, K. H., 1997. SEDIMENT BACTERIA: Who’s there, what are they doing, and what’s new? Annual Review of Earth and Planetary Sciences 25(1), 403–434. doi:10.1146/annurev.earth.25.1.403
- Nielsen, L. P. et al., 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074. doi:10.1038/nature08790
Lecture 6
- Antler, G. et al., 2014. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments. Estuarine, Coastal and Shelf Science 142, 4–11. doi:10.1016/j.ecss.2014.03.001
- Mills, J. V., 2014. Microbially-mediated cryptic sulfur cycling in salt marsh sediments: Evidence and implications. MPhil, University of Cambridge.
- Mills, J. V., Antler, G., Turchyn, A. V., 2016. Geochemical evidence for cryptic sulfur cycling in salt marsh sediments. EPSL 453, 23–32. doi:10.1016/j.epsl.2016.08.001
Lecture 7
- Beck, M. et al., 2008. Sulphate, dissolved organic carbon, nutrients and terminal metabolic products in deep pore waters of an intertidal flat. Biogeochemistry 89(2), 221–238. doi:10.1007/s10533-008-9215-6
- Beck, M., Dellwig, O., Liebezeit, G., Schnetger, B., Brumsack, H., 2008. Spatial and seasonal variations of sulphate, dissolved organic carbon, and nutrients in deep pore waters of intertidal flat sediments. Estuarine, Coastal and Shelf Science 79(2), 307–316. doi:10.1016/j.ecss.2008.04.007
- Beck, M. et al., 2009. Deep pore water profiles reflect enhanced microbial activity towards tidal flat margins. Ocean Dynamics 59(2), 371–83. doi:10.1007/s10236-008-0176-z
- Bishop, T., Turchyn, A. V., Sivan, O., 2013. Fire and brimstone: The microbially mediated formation of elemental sulfur nodules from an isotope and major element study in the Paleo-Dead Sea. PLoS ONE 8(10), e75883. doi:10.1371/journal.pone.0075883
- Jansen, S. et al., 2009. Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dynamics 59(2), 317–332. doi:10.1007/s10236-009-0179-4
- Kostka, J. E., Roychoudhury, A., Van Cappellen, P., 2002. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 60(1), 49–76. doi:10.1023/A:1016525216426
- Orsi, W. D., 2018. Ecology and evolution of seafloor and subseafloor microbial communities. Nature Reviews Microbiology 16(11), 671–683. doi:10.1038/s41579-018-0046-8
- Riedinger, N. et al., 2017. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The Argentine continental margin. Frontiers in Earth Science 5. doi:10.3389/feart.2017.00033
Lecture 8 - Neil Davies
- Davies, N. S. & Shillito, A. P., 2018. Incomplete but intricately detailed: The inevitable preservation of true substrates in a time-deficient stratigraphic record. Geology 46(8), 679–682. doi:10.1130/G45206.1
- Davies, N. S., Shillito, A. P., McMahon, W. J., 2017. Short-term evolution of primary sedimentary surface textures (microbial, abiotic, ichnological) on a dry stream bed: Modern observations and ancient implications. PALAIOS 32(3), 125–134. doi:10.2110/palo.2016.064
- Miall, A. D., 2015. Updating uniformitarianism: Stratigraphy as just a set of ‘frozen accidents'. Geological Society, London, Special Publications 404, 11–36. doi:10.1144/SP404.4
- Paola, C., Ganti, V., Mohrig, D., Runkel, A. C., Straub, K. M., 2018. Time not our time: Physical controls on the preservation and measurement of geologic time. Annual Review of Earth and Planetary Sciences 46, 409–438. doi:10.1146/annurev-earth-082517-010129
- Peters, S. E. & Husson, J. M., 2017. Sediment cycling on continental and oceanic crust. Geology 45(4), 323–326. doi:10.1130/G38861.1
- Trabucho-Alexandre, J., 2015. More gaps than shale: Erosion of mud and its effect on preserved geochemical and palaeobiological signals. Geological Society, London, Special Publications 404, 251–270. doi:10.1144/SP404.10. Open access via the Lyell Collection.
Lectures 9-10 - Alex Liu
- Bekker, A. & Holland, H. D., 2012. Oxygen overshoot and recovery during the early Paleoproterozoic. EPSL 317–318, 295–304. doi:10.1016/j.epsl.2011.12.012
- Canfield, D. E., 1998. A new model for Proterozoic ocean chemistry. Nature 396, 450–453. doi:10.1038/24839
- Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E., Caetano-Anolles, G., 2010. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proceedings of the National Academy of Sciences 107(23), 10567–10572. doi:10.1073/pnas.0912491107
- Kump, L. R. et al., 2011. Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334, 1694–1696. doi:10.1126/science.1213999
- Lyons, T. W., Reinhard, C. T., Love, G. D., Xiao, S., 2012. Geobiology of the Proterozoic eon, in: Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E., Konhauser, K. O.), John Wiley & Sons, Ltd, 371–402. doi:10.1002/9781118280874.ch20
- Planavsky, N. J. et al., 2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451. doi:10.1038/nature10327
- Raiswell, R. & Canfield, D. E., 2012. Section 3. Iron Diagenesis and the C-S-Fe Geochemical Indicators. Geochemical Perspectives 1(1), 19–41.
- Reinhard, C. T., Lyons, T. W., Rouxel, O., Asael, D., Dauphas, N., Kump, L. R., 2012. 7.10.4 Iron speciation and isotope perspectives on Paleoproterozoic water column chemistry, in: Reading the Archive of Earth’s Oxygenation Vol. 3., Springer.
Lecture 11
- Anbar, A. D., 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297, 1137–1142. doi:10.1126/science.1069651
- Canfield, D. E. et al., 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 949–952. doi:10.1126/science.1154499
- Canfield, D. E., Poulton, S. W. , Narbonne, G. M., 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95. https://doi.org/10.1126/science.1135013
- Derry, L. A., 2010. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. EPSL 294(1–2), 152–62. doi:10.1016/j.epsl.2010.03.022
- Fike, D. A., Grotzinger, J. P., Pratt, L. M., Summons, R. E., 2006. Oxidation of the Ediacaran ocean. Nature 444, 744–747. doi:10.1038/nature05345
- Guilbaud, R., Poulton, S. W., Butterfield, N. J., Zhu, M., Shields-Zhou, G. A., 2015. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience 8(6), 466–470. doi:10.1038/ngeo2434
- Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., Rice, A. H. N., 2005. Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin 117(9), 1181-1207. doi:10.1130/B25630.1
- Hoffman, P. F., 1998. A Neoproterozoic snowball Earth. Science 281, 1342–1346. doi:10.1126/science.281.5381.1342
- Kirschvink, J. L., Ripperdan, R. L., Evans, D. A., 1997. Evidence for a large-scale reorganization of early Cambrian continental masses by inertial interchange true polar wander. Science 277, 541–545. doi:10.1126/science.277.5325.541
- Konhauser, K. O. et al., 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–753. doi:10.1038/nature07858
- Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., Butterfield, N. J., 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7(4), 257–265. doi:10.1038/ngeo2108
- Lubick, N., 2002. Snowball fights. Nature 417, 12–13. https://doi.org/10.1038/417012a
- Planavsky, N. J. et al., 2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451. doi:10.1038/nature10327
- Schrag, D. P., Higgins, J. A., Macdonald, F. A., Johnston, D. T., 2013. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543. doi:10.1126/science.1229578
- Shields, G. A. & Mills, B. J. M., 2017. Tectonic controls on the long-term carbon isotope mass balance. Proceedings of the National Academy of Sciences 114(17), 4318–4323. doi:10.1073/pnas.1614506114
- Steinberger, B. & Torsvik, T. H., 2008. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623. doi:10.1038/nature06824
Lectures 12 - Nick Butterfield
- Buick, R., 2012. Geobiology of the Archean eon, in: Fundamentals of Geobiology, (eds Knoll, A. H., Canfield, D. E., Konhauser, K. O.), John Wiley & Sons, Ltd, 351–370. doi:10.1002/9781118280874.ch19
- Konhauser, K. O., 2007. Introduction to Geomicrobiology, Wiley-Blackwell. Available from ESC Library Office.
Lectures 13-14
- Falkowski, P. G., Fenchel, T., Delong, E. F., 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039. doi:10.1126/science.1153213
- Kasting, J. F. & Canfield, D. E., 2012. The global oxygen cycle, in: Fundamentals of Geobiology, (eds Knoll, A. H., Canfield, D. E., Konhauser, K. O.), John Wiley & Sons, Ltd, 93–104. doi:10.1002/9781118280874.ch7
- Lyons, T. W., Reinhard, C. T., Love, G. D., Xiao, S., 2012. Geobiology of the Proterozoic eon, in: Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E., Konhauser, K. O.), John Wiley & Sons, Ltd, 371–402. doi:10.1002/9781118280874.ch20
Lecture 15
- Butterfield, N.J., 2015. Early evolution of the Eukaryota. Palaeontology 58(1), 5–17. doi:10.1111/pala.12139
- Butterfield, N. J., 2015. Proterozoic photosynthesis - a critical review. Palaeontology 58(6), 953–972. doi:10.1111/pala.12211
- Lyons, T. W., Reinhard, C. T., Love, G. D., Xiao, S., 2012. Geobiology of the Proterozoic eon, in: Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E., Konhauser, K. O.), John Wiley & Sons, Ltd, 371–402. doi:10.1002/9781118280874.ch20
Lectures 16-17
- Butterfield, N. J., 2015. The Neoproterozoic. Current Biology 25(19), R859–R863. doi:10.1016/j.cub.2015.07.021
- Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., Butterfield, N. J., 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7(4), 257–265. doi:10.1038/ngeo2108
- Xiao, S. & Laflamme, M., 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution 24(1), 31–40. doi:10.1016/j.tree.2008.07.015
Lectures 18-19
- Budd, G. E. & Jensen, S., 2000. A critical reappraisal of the fossil record of the Bilaterian phyla. Biological Reviews of the Cambridge Philosophical Society 75(2), 253–295. doi:10.1111/j.1469-185X.1999.tb00046.x
- Budd, G. E. & Jensen, S., 2017. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biological Reviews 92(1), 446–473. https://doi.org/10.1111/brv.12239
- Budd, G. E. & Telford, M. J., 2009. The origin and evolution of arthropods. Nature 457, 812–817. doi:10.1038/nature07890
- Butterfield, N. J., 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology 43(1), 166–177. doi:10.1093/icb/43.1.166
- Butterfield, N. J., Balthasar, U., Wilson, L. A., 2007. Fossil diagenesis in the Burgess Shale. Palaeontology 50(3), 537–543. doi:10.1111/j.1475-4983.2007.00656.x
- Butterfield, N.J. & Harvey, T. H. P., 2012. Small Carbonaceous fossils (SCFs): A new measure of early Paleozoic paleobiology. Geology 40(1), 71–74. doi:10.1130/G32580.1
- Erwin, D. H. et al., 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science 334, 1091–1097. doi:10.1126/science.1206375
- Mangano, M. G. & Buatois, L. A., 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: Evolutionary and geobiological feedbacks. Proceedings of the Royal Society B: Biological Sciences 281, 20140038. doi:10.1098/rspb.2014.0038
- Morris, S. C. & Caron, J., 2014. A primitive fish from the Cambrian of North America. Nature 512, 419–422. doi:10.1038/nature13414
- Morris, S. C., 2012. Pikaia Gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. Biological Reviews 87(2), 480–512. doi:10.1111/j.1469-185X.2012.00220.x
- Ortega-Hernández, J., 2015. Lobopodians. Current Biology 25(19), R873–R875. https://doi.org/10.1016/j.cub.2015.07.028
- Sansom, R. S., Gabbott, S. E., Purnell, M. A., 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463, 797–800. https://doi.org/10.1038/nature08745
- Seilacher, A, 1999. Biomat-related lifestyles in the Precambrian. PALAIOS 14(1), 86-93. doi:10.2307/3515363
- Smith, M. R., 2014. Ontogeny, morphology and taxonomy of the soft-bodied Cambrian ‘mollusc’ Wiwaxia. Palaeontology 57(1), 215–229. doi:10.1111/pala.12063
- Smith, M. R., Harvey, T. H. P., Butterfield, N. J., 2015. The macro- and micro-fossil record of the Cambrian priapulid Ottoia. Palaeontology 58(4), 705–721. doi:10.1111/pala.12168
- Tarhan, L. G., Droser, M. L., Planavsky, N. J., Johnston, D. T., 2015. Protracted development of bioturbation through the early Palaeozoic era. Nature Geoscience 8(11), 865–869. doi:10.1038/ngeo2537
Lectures 20-21
- Servais, T. & Harper, D. A. T., 2018. The Great Ordovician Biodiversification Event (GOBE): Definition, concept and duration. Lethaia 51(2), 151–164. doi:10.1111/let.12259
Lecture 22
- Butterfield, N. J., 2018. Oxygen, animals and aquatic bioturbation: An updated account. Geobiology 16(1), 3–16. doi:10.1111/gbi.12267
- Butterfield, N. J., 2011. Animals and the invention of the Phanerozoic Earth system. Trends in Ecology & Evolution 26(2), 81–87. doi:10.1016/j.tree.2010.11.012
Lecture 23
- Jenkins, J. M. et al., 2015. Discovery and validation of Kepler-452b: A 1.6-Re super Earth exoplanet in the habitable zone of a G2 star. The Astronomical Journal 150(2), 56. doi:10.1088/0004-6256/150/2/56
- Krissansen-Totton, J., Olson, S., Catling, D. C., 2018. Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Science Advances 4(1), eaao5747. doi:10.1126/sciadv.aao5747
- Levin, G. V. & Straat, P. A., 2016. The case for extant life on Mars and its possible detection by the Viking Labeled Release experiment. Astrobiology 16(10), 798–810. https://doi.org/10.1089/ast.2015.1464
Lecture 24 - Neil Davies
- Buatois, L. & Gabriela Mangano, M., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge Univ. Press. doi:10.1017/CBO9780511975622. Available as an eBook.
- Davies, N. S. & Gibling, M. R., 2013. The sedimentary record of carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth-Science Reviews 120, 40–79. doi:10.1016/j.earscirev.2013.02.004
- Djokic, T., Van Kranendonk, M. J., Campbell, K. A., Walter, M. R., Ward, C. R., 2017. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nature Communications 8(1), 15263. doi:10.1038/ncomms15263
- Dunlop, J. A., Scholtz, G., Selden, P. A., 2013. Water-to-land transitions, in: Arthropod Biology and Evolution (eds Minelli, A., Boxshall, G., Fusco, G.), Springer Berlin Heidelberg, 417–439.
- Greb, S. F., DiMichele, W. A., Gastaldo, R. A., 2006. Evolution and importance of wetlands in Earth history, in: Wetlands through Time. Geological Society of America. doi:10.1130/2006.2399(01)
- Kenrick, P., Wellman, C. H., Schneider, H., Edgecombe, G. D., 2012. A timeline for terrestrialization: Consequences for the carbon cycle in the Palaeozoic. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 519–536. doi:10.1098/rstb.2011.0271
- Wellman, C. H. & Strother, P. K., 2015. The terrestrial biota prior to the origin of land plants (embryophytes): A review of the evidence. Palaeontology 58(4), 601–627. doi:10.1111/pala.12172