Agarwal et al. (2023) Use of magnetic fabrics and X-ray diffraction to reveal low strains in experimentally deformed Maggia gneiss. International Journal of Earth Sciences, 10.1007/s00531-022-02284-0.
Padmanabha et al. (2022) Dynamic Split Tensile Strength of Basalt, Granite, Marble and Sandstone: Strain rate dependency and Fragmentation. Rock Mechanics and Rock Engineering, 10.1007/s00603-022-03075-4 (Preprint accesible on ArXiv: 2110.10072).
Itcovitz et al. (2022) Reduced atmospheres of post-impact worlds: The early Earth. The Planetary Science Journal, 3:5, 10.3847/PSJ/ac67a9 (Preprint accesible on ArXiv: 2204.09946).
Walton et al. (2022) Ancient and recent collisions revealed by phosphate minerals in the Chelyabinsk meteorite. Communications Earth & Environment, 3: 40, 10.1038/s43247-022-00373-1.
Kenkmann et al. (2022) Secondary cratering on Earth: The Wyoming impact crater field. GSA Bulletin, 10.1130/B36196.1.
Rae et al. (2022) Dynamic Compressive Strength and Fragmentation in Sedimentary and Metamorphic Rocks. Tectonophysics, 824: 229221, 10.1016/j.tecto.2022.229221. (Pre-print accesible on EarthArXiv: 10.31223/X5RD0C)
McCall et al. (2021) Orientations of planar cataclasite zones in the Chicxulub peak ring as a ground truth for peak ring formation models. Earth and Planetary Science Letters 576: 117236, 10.1016/j.epsl.2021.117236.
Wittmann et al. (2021) Shock impedance amplified impact deformation of zircon in granitic rocks from the Chicxulub impact crater. Earth and Planetary Science Letters 575: 117201, 10.1016/j.epsl.2021.117201.
Ebert et al. (2021) Comparison of stress orientation indicators in Chicxulub’s peak ring: Kinked biotites, basal PDFs, and feather features. in: Large Meteorite Impacts and Planetary Evolution VI, GSA Special Paper 550: 479, 10.1130/2021.2550(21).
Rae et al. (2021) Stress and Strain during Shock Metamorphism. Icarus 370, 114687, 10.1016/j.icarus.2021.114687. (Post-print accesible on EarthArXiv: 10.31223/X5HC8W)
Nichols et al. (2021) The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt. Nature Astronomy, 10.1038/s41550-021-01469-y.
Rae et al. (2020) Dynamic Compressive Strength and Fragmentation in Felsic Crystalline Rocks. Journal of Geophysical Research: Planets, e2020JE006561. 10.1029/2020JE006561.
Kring et al. (2020) Probing the hydrothermal system of the Chicxulub impact crater. Science Advances 6(22), eaaz3053. 10.1126/sciadv.aaz3053.
Collins et al. (2020) A steeply-inclined trajectory for the Chicxulub impact. Nature Communications 11(1). 1-10. 10.1038/s41467-020-15269-x.
Timms et al. (2020) Shocked titanite records Chicxulub hydrothermal alteration and impact age. Geochimica et Cosmochimica Acta 281, 12-30. 10.1016/j.gca.2020.04.031.
Agarwal et al. (2019). Impact experiment on gneiss: The effects of foliation on cratering process. Journal of Geophysical Research: Solid Earth 124 (12), 13532-13546. 10.1029/2019JB018345.
Gulick et al. (2019) The first day of the Cenozoic. Proceedings of the National Academy of Sciences 116 (39), 19342-19351. 10.1073/pnas.1909479116.
Rae et al. (2019) Impact‐induced porosity and microfracturing at the Chicxulub impact structure. Journal of Geophysical Research: Planets 124.7, 1960-1978. 10.1029/2019JE005929.
Timms et al. (2019) New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico. Contributions to Mineralogy and Petrology, 174(5), 38. 10.1007/s00410-019-1565-7.
Rae et al. (2019) Stress‐Strain Evolution during Peak‐Ring Formation: A Case Study of the Chicxulub Impact Structure. Journal of Geophysical Research: Planets 124.2, 396-417. 10.1029/2018JE005821.
Riller et al. (2018) Rock fluidization during peak-ring formation of large impact structures. Nature, 562(7728), 511. 10.1038/s41586-018-0607-z.
Christeson et al. (2018) Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 495, 1-11. 10.1016/j.epsl.2018.05.013.
Lowery et al. (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 558(7709). 288.10.1038/s41586-018-0163-6.
Holm-Alwmark et al. (2017) Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden). Meteoritics & Planetary Science, 52(12), 2521-2549. 10.1111/maps.12955.
Rae et al. (2017) Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure. Meteoritics & Planetary Science, 52(7), 1330-1350. 10.1111/maps.12825.
Morgan et al. (2016) The formation of peak rings in large impact craters. Science, 354(6314), 878-882. 10.1126/science.aah6561.
Rae et al. (2016) Time scales of magma transport and mixing at Kīlauea Volcano, Hawai’i. Geology, 44(6), 463-466. 10.1130/G37800.1.